
Embedded Target for Motorola® MPC555

 For Use with Real-Time Workshop ®

User’s Guide
Version 2

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Embedded Target for Motorola MPC555 User’s Guide
 COPYRIGHT 2002 - 2004 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Motorola is a registered trademark and MPC555 is a trademark of Motorola, Inc.
Metrowerks and CodeWarrior are registered trademarks of Metrowerks Corporation.
Diab and SingleStep are registered trademarks of WindRiver Systems.
Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: March 2002 Online only Version 1.0 (Release 12.1+)
July 2002 Online only Version 1.0.1 (Release 13)
December 2002 Online only Version 1.1 (Release 13+)
June 2004 Online only Version 2.0 (Release 14)

i

Contents

1
Getting Started

Introduction to the Embedded Target
for Motorola MPC555 . 1-2

Feature Summary . 1-2
Applications for the Embedded Target
for Motorola MPC555 . 1-5

Prerequisites . 1-8

Using This Guide . 1-9

Installing the Embedded Target for Motorola MPC555 . . 1-10

Hardware and Software Requirements 1-11
Operating System Requirements . 1-11
Hardware Requirements . 1-11
Software Requirements . 1-11

Setting Up and Verifying Your Installation 1-13

Setting Target Preferences . 1-14
Configuring the Embedded Target
for Motorola MPC555
for Your Cross-Development Toolchain 1-14
Run Test Program . 1-20
Download Boot Code to Flash Memory 1-20

2
Generating Stand-Alone Real-Time Applications

Introduction . 2-2
Deploying Generated Code . 2-2

ii Contents

Tutorial: Creating a New Application 2-4
Before You Begin . 2-4
The Example Model . 2-6
Generating Code . 2-9
Downloading the Application to RAM via Serial or CAN 2-12
Downloading the Application to RAM
via BDM . 2-16

Downloading Boot and Application Code 2-19
RAM vs. Flash Memory . 2-19
Overview of Memory Organization
and the Boot Process . 2-20
Downloading Application Code . 2-22
Downloading Boot or Application Code via CAN
Without Manual CPU Reset . 2-26
Boot Code Parameters for CAN Download 2-27

Generating ASAP2 Files . 2-30
ASAP2 File Generation Procedure . 2-31
Data Acquisition (DAQ) List Configuration 2-33

Execution Profiling . 2-35
The Execution Profiling Block . 2-36
Real Time Workshop Options for Execution Profiling 2-37
Real Time Workshop Overrun Options 2-38

Summary of the Real-Time Target . 2-40
Code Generation Options . 2-40
Requirements and Restrictions . 2-42

3
PIL Cosimulation

Overview of PIL Cosimulation . 3-2
Why Use Cosimulation? . 3-2
How Cosimulation Works . 3-3

iii

Tutorial 1: Building and Running a PIL Cosimulation 3-5
Before You Begin . 3-5
Hardware Connections . 3-5
The Demo Model . 3-5
Setting Up the Model . 3-8
Building PIL and Simulation Components 3-11
Using the Demo Model In a PIL Cosimulation 3-14

Tutorial 2: Modifying and Rebuilding the Controller 3-17
Modifying the Controller . 3-17
Rebuilding the Controller and Cosimulating 3-19

Tutorial 3: Using the Demo Model In Simulation 3-21

PIL Target Summary . 3-22
Code Generation Options . 3-22
Build Process Files and Directories . 3-24
Restrictions . 3-25

Algorithm Export Target . 3-27

Code Analysis Reporting . 3-28

Algorithm Export Target Summary . 3-30
Code Generation Options . 3-30
Restrictions . 3-30

4
Block Reference

The Embedded Target for
Motorola MPC555 Block Libraries . 4-2

Using Block Reference Pages . 4-3

Blocks Organized by Libraries . 4-4
MPC555 Driver Library . 4-5
Configuration Class Blocks . 4-10

iv Contents

CAN Message Blocks and CAN Drivers Libraries 4-11
Data Type Support and Scaling for
Device Driver Blocks . 4-12

Blocks — Alphabetical List . 4-16

A
Toolchains and Hardware

Setting Up Your Toolchain . A-2

Setting Up Your Installation with
Diab Cross-Compiler and SingleStep Debugger A-3

Setting Up Your Installation with
Metrowerks CodeWarrior . A-7

Setting Up Your Target Hardware . A-10

CAN Hardware and Drivers . A-13

Configuration for Nondefault Hardware A-14
Hardware Clock Configuration . A-14

Integrating External Blocksets . A-17

Index

1
Getting Started

This section contains the following topics:

Introduction to the Embedded Target
for Motorola MPC555 (p. 1-2)

Overview of the product and the use of the Embedded
Target for Motorola® MPC555 in the development
process.

Prerequisites (p. 1-8) What you need to know before using the Embedded
Target for Motorola MPC555.

Using This Guide (p. 1-9) Suggested path through this document to get you up and
running quickly with the Embedded Target for Motorola
MPC555.

Installing the Embedded Target for
Motorola MPC555 (p. 1-10)

Installation of the product.

Hardware and Software Requirements
(p. 1-11)

Hardware platforms supported by the product; required
MathWorks tools and development tools (e.g. compilers,
debuggers) required for use with the product.

Setting Up and Verifying Your
Installation (p. 1-13)

Overview of setting up your development tools and
hardware to work with the Embedded Target for
Motorola MPC555, and verifying correct operation.

Setting Target Preferences (p. 1-14) Configuring environmental settings and preferences
associated with the Embedded Target for Motorola
MPC555 for use with specific development tools.

1 Getting Started

1-2

Introduction to the Embedded Target
for Motorola MPC555

The Embedded Target for Motorola MPC555 is an add-on product for use with
the Real-Time Workshop® Embedded Coder. It provides a complete and unified
set of tools for developing embedded applications for the Motorola MPC555 and
MPC565 processors.

Used in conjunction with Simulink®, Stateflow®, and the Real-Time Workshop
Embedded Coder, the Embedded Target for Motorola MPC555 lets you

• Design and model your system and algorithms.

• Compile, download, run and debug generated code on the target hardware,
seamlessly integrating with industry-standard compilers and development
tools for the MPC555.

• Use cosimulation and rapid prototyping techniques to evaluate performance
and validate results obtained from generated code running on the target
hardware.

• Deploy production code on the target hardware.

Feature Summary

Production Code Generation

• The Real-Time Workshop Embedded Coder generates production code for
use on the target MPC5xx microcontroller.

• The Real-Time Workshop Embedded Coder generates project or makefiles
for popular cross-development systems:

- Wind River Systems Diab cross-compiler

- Metrowerks CodeWarrior

• Debugger support:

- Wind River Systems SingleStep debugger

- Metrowerks CodeWarrior debugger

Introduction to the Embedded Target for Motorola MPC555

1-3

Device Driver Support

• The Embedded Target for Motorola MPC555 Library provides device driver
blocks that let your applications access on-chip resources. The I/O blocks
support the following features of the MPC555 and MPC565:

- Pulse width modulation (PWM) generation via the Modular Input/Output
Subsystem (MIOS) PWM unit or the Time Processor Unit 3 (TPU) modules

- Analog input via the Queued Analog-to-Digital Converter (QADC64)

- Digital input and output via the MIOS or TPU

- Digital input via the QADC64

- Frequency and pulse width measurement via the MIOS Double Action
Submodule (MDASM)

- Transmit or receive Controller Area Network (CAN) messages via the
MPC5xx TouCAN modules

- Driver blocks to support other functions of the TPU modules—Fast
Quadrature Decode, New Input Capture/Input Transition Counter, and
Programmable Time Accumulator

- Serial transmit and receive

- Utility blocks such as a watchdog timer

Code and Performance Analysis
Web-viewable code generation report includes

• Analysis of RAM/ROM usage and other variables

• Analysis of code generation options used, with optimization suggestions

• Hyperlinks to all generated code files

• Hyperlinks from generated code to source model in Simulink

Applications Development and Rapid Prototyping

• Generation of real-time, stand-alone code for MPC5xx

• Scheduler and time functions for singlerate or multirate real-time operation

• CAN-based loader for download of generated code to RAM or flash memory

• CAN-based host-target communications for non-real-time retrieval of data
on host computer

1 Getting Started

1-4

Simulation and Cosimulation

• Automatic S-function generation lets you validate your generated code in
software-in-the-loop (SIL) simulation.

• Processor-in-the-loop (PIL) cosimulation lets you integrate generated code,
running on the target processor, into your simulation.

• SIL and PIL code components are generated by the Real-Time Workshop
Embedded Coder. These simulation components are in the same compact
and efficient format as the production code generated for final deployment.

CAN Support

• Transmit or receive CAN messages via the MPC555 TouCAN modules.

• CAN Drivers (Vector) library provides blocks for configuring and connecting
to Vector-Informatik CAN hardware and drivers. These can be used in
simulation to connect to a real CAN bus.

• The CAN Message Blocks library includes blocks for transmitting, receiving,
decoding, and formatting CAN messages. It also supports message
specification via the Vector-Informatik CANdb standard.

Code Validation and Performance Analysis

Code Validation. Since signal data is available to Simulink during each sample
interval in a PIL simulation, you can observe signal data on Scope blocks or
other Simulink signal viewing blocks. You can also store signal data to
MAT-files via To File blocks. To validate the results obtained by the generated
code running on the target processor, you can compare these files to results
obtained using a normal Simulink plant/controller simulation.

Determining Code Size. In control design it is critical to ensure that the size of the
generated code does not exceed physical limitations of RAM and ROM. The
Embedded Target for Motorola MPC555 can automatically produce a code
generation report that displays the RAM usage and ROM size of the generated
code.

This capability is useful when selecting which code generation optimizations
will be used. After determining the size of the required RAM and ROM, you can
consider which code generation optimizations to use, and consider
modifications to the modeling style.

Introduction to the Embedded Target for Motorola MPC555

1-5

Applications for the Embedded Target
for Motorola MPC555
The Embedded Target for Motorola MPC555 provides targets that support
three application scenarios:

• Real-time (RT) execution and rapid prototyping target

• Processor-in-the-loop (PIL) cosimulation target

• Algorithm export (AE) target

In the sections that follow, we summarize typical applications and the tasks
you will need to perform for each; we also provide links to the relevant
documentation.

Real-Time Execution and Rapid Prototyping
The Embedded Target for Motorola MPC555 real-time target enables you to
use your controller block diagram in real time to perform embedded control.
With this target, you can add I/O blocks for the MPC5xx to your controller
subsystem, generate and build code, download to the target, and run the
generated C code.

When you first begin using the RT target, see “Tutorial: Creating a New
Application” on page 2-4, which demonstrates the following topics through the
use of a simple model with a device driver:

• Examining the demo model with a plant model and controller

• Adding the MPC555 Resource Configuration block to your subsystem

• Adding I/O device drivers from the Embedded Target for Motorola MPC555
library

• Selecting the RT target

• Generating code for real time

• Downloading code with

- A BDM connector

- CAN

• Running the generated code in real-time

You may also be interested in generating code analysis information from your
RT target build. See “Code Analysis Reporting” on page 3-28 for details.

1 Getting Started

1-6

Processor-in-the-Loop
The processor-in-the-loop (PIL) target lets you run a cosimulation of a
closed-loop Simulink model for the purpose of code validation and analysis.
When running a PIL cosimulation, you use a closed-loop model with two major
components: a plant model and a controller. The plant model may contain any
Simulink blocks including a combination of continuous-time and discrete-time
blocks. The controller must not include any continuous-time blocks, since this
component is used for code generation in the embedded-C format of the
Real-Time Workshop Embedded Coder.

To get started with the PIL target, see “Tutorial 1: Building and Running a PIL
Cosimulation” on page 3-5. The tutorial covers the following topics:

• Opening the demo model and examining the plant model and controller

• Selecting the PIL target

• Generating the Embedded Real-Time (ERT) S-function and the
corresponding library block

• Inserting the S-function back into the closed-loop model

• Automatic downloading of generated code with

- SingleStep debugger and a Background Debug Mode (BDM) port
connector

- CodeWarrior and a BDM connector

• Running a PIL cosimulation

You may also be interested in generating code analysis information from your
PIL target build. See “Code Analysis Reporting” on page 3-28 for details.

Algorithm Export
The Embedded Target for Motorola MPC555 algorithm export (AE) target
enables you generate code for your controller subsystem and build the code as
a stand-alone executable for use on the MPC555. The difference between the
AE and the PIL target is that the AE target eliminates all extraneous code
(such as serial communications code) used for cosimulation, and also
eliminates any real-time interrupts. The AE target therefore generates code
only for the basic controller subsystem (e.g. algorithm code). You can then
modify or customize this code for your own special purposes.

In contrast, the RT target provides turnkey code including interrupt service
routines, driver code, and underlying initialization code for the MPC555.

Introduction to the Embedded Target for Motorola MPC555

1-7

Depending upon your particular application, you may find it more valuable to
begin with the AE target baseline, and extend this environment for your own
use.

The AE target is documented in “Algorithm Export Target” on page 3-27.

Like the PIL and RT targets, the AE target supports generation of code
analysis information. See “Code Analysis Reporting” on page 3-28 for details.

1 Getting Started

1-8

Prerequisites
This document assumes you are experienced with MATLAB®, Simulink,
Stateflow, Real-Time Workshop, and the Real-Time Workshop Embedded
Coder.

Minimally, you should read the following from the “Basic Concepts and
Tutorials” section of the Real-Time Workshop documentation:

• “Basic Real-Time Workshop Concepts.” This section introduces general
concepts and terminology related to Real Time Workshop.

• “Quick Start Tutorials.” This section provides several hands-on exercises
that demonstrate the Real-Time Workshop user interface, code generation
and build process, and other essential features.

You should also familiarize yourself with the Real-Time Workshop Embedded
Coder documentation.

In addition, if you want to understand and use the device driver blocks in the
the Embedded Target for Motorola MPC555 library, you should have at least a
basic understanding of the architecture of the MPC555. The Motorola MPC555
Users Guide is required reading. We recommend that you read the introduction
to the processor and familiarize yourself with all the major subsystems of the
MPC555.You can find this document at the following URL:
http://e-www.motorola.com/webapp/sps/library/prod_lib.jsp.

Using This Guide

1-9

Using This Guide
We suggest the following path to get acquainted with the Embedded Target for
Motorola MPC555 and gain hands-on experience with the features most
relevant to your interests:

• Read Chapter 1, “Getting Started” in its entirety, paying particular attention
to “Setting Up and Verifying Your Installation” on page 1-13.

• If you are interested in using the device driver blocks supplied with
Embedded Target for Motorola MPC555 and in deploying stand-alone,
real-time applications on the MPC555, read Chapter 2, “Generating
Stand-Alone Real-Time Applications.” Work through the “Tutorial: Creating
a New Application” on page 2-4.

• If you are interested in processor-in-the-loop (PIL) cosimulation, read
Chapter 3, “PIL Cosimulation” to learn about the Embedded Target for
Motorola MPC555 PIL target. Work through the “Tutorial 1: Building and
Running a PIL Cosimulation” on page 3-5.

• Then, for in-depth information about the device drivers and other blocks
supplied with Embedded Target for Motorola MPC555, see Chapter 4, “Block
Reference.” It is particularly important to read “MPC555 Resource
Configuration” on page 4-41, as the MPC555 Resource Configuration block is
required to use most of the device driver blocks.

See also the Embedded Target for Motorola MPC555 Demos. To browse the
demos, open the MPC555 Help and Demos library. You can then double click
the Help for Demos block to go directly to information and instructions for all
demos, or select Start –> Simulink –> Embedded Target for Motorola
MPC555 –> Demos. These demos are used in the tutorials, where there are
detailed explanations.

1 Getting Started

1-10

Installing the Embedded Target for Motorola MPC555
Your platform-specific MATLAB Installation guide provides all of the
information you need to install the Embedded Target for Motorola MPC555.

Prior to installing the Embedded Target for Motorola MPC555, you must
obtain a License File or Personal License Password from The MathWorks. The
License File or Personal License Password identifies the products you are
permitted to install and use.

As the installation process proceeds, it displays a dialog where you can select
which products to install.

Hardware and Software Requirements

1-11

Hardware and Software Requirements

Operating System Requirements
The Embedded Target for Motorola MPC555 is a PC-Windows only product.
The product has been tested on Microsoft Windows NT, 2000, and XP.

You can see the system requirements for MATLAB online at

http://www.mathworks.com/products/system.shtml/Windows

Hardware Requirements
Programs generated by the Embedded Target for Motorola MPC555 can run on
any Electronic Control Unit (ECU) that is based on the MPC555 or MPC565
processor.

In this document, however, we assume that you are working with the Phytec
phyCORE-MPC555 development board, and we document specific settings and
procedures for use with the Phytec phyCORE-MPC555 board, in conjunction
with specific cross-development environments.

If you use a different development board, you may need to adapt these settings
and procedures for your development board.

If you want to use CAN to connect to your target you require Vector-Informatik
CAN hardware and drivers. See “CAN Hardware and Drivers” on page A-13.

Software Requirements

Required and Related MathWorks Products
The Embedded Target for Motorola MPC555 requires these MathWorks
products:

• MATLAB 7.0 (Release 14)

• Simulink 6.0 (Release 14)

• Real-Time Workshop 6.0 (Release 14)

• Real-Time Workshop Embedded Coder 4.0 (Release 14)

1 Getting Started

1-12

Optional — if you want to implement the CAN Calibration Protocol (for
example, for downloading without manual processor reset) by using the CAN
Calibration Protocol block, you also need

• Stateflow 6.0(Release 14) and Stateflow Coder

For more information about any of these products, see either

• The online documentation for that product, if it is installed or if you are
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com; see the “products”
section

The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with the Embedded Target for Motorola
MPC555. For required and related products, see:
http://www.mathworks.com/products/target_mpc555/

Supported Cross-Development Tools
In addition to the required MathWorks software, a supported
cross-development environment is required. The Embedded Target for
Motorola MPC555 currently supports the cross-development tools listed below;
please read carefully the limitations noted:

• Wind River Systems Diab cross-compiler (version 5.1.2), and Wind River
Systems SingleStep debugger of the following versions:

- Version 7.7.3 (debug via Wind River Vision Probe) (for MPC5xx)

- Version 7.6.2 (debug via Macraigor Systems Wiggler, Raven / Blackbird,
On-board BDM) (for MPC555 only)

• Metrowerks CodeWarrior for Embedded PowerPC (version 8.0)

The full feature set (PIL, RT, and AE targets) is supported for both
toolchains.

Before using the Embedded Target for Motorola MPC555 with any of the above
cross-development tools, please be sure to read and follow the instructions in
“Setting Up and Verifying Your Installation” on page 1-13.

Setting Up and Verifying Your Installation

1-13

Setting Up and Verifying Your Installation
The next sections describe how to configure your development environment
(compiler, debugger, etc.) for use with the Embedded Target for Motorola
MPC555 and verify correct operation. The initial configuration steps are
described in the following sections:

• You must set up your development environment and your target hardware.
Information on these settings can be found in the “Toolchains and
Hardware” on page A-1:

- “Setting Up Your Target Hardware” on page A-10

- “Setting Up Your Toolchain” on page A-2

• You must configure Embedded Target for Motorola MPC555 to work with
your toolchain by specifying the locations of your compiler and debugger.
This is described in the section “Setting Target Preferences” on page 1–14.

• We supply a test program to verify your installation. This confirms you have
correctly set up your toolchain, target preferences and development board.
See “Run Test Program” on page 1–20.

• The next step is to download boot code to the flash memory of your MPC555.
See “Download Boot Code to Flash Memory” on page 1–20.

Note You must download the new boot code if you have used a previous
release of Embedded Target for Motorola MPC555 with your hardware. See
“Download Boot Code to Flash Memory” on page 1–20.

Once you have completed these steps we suggest you run the tutorials in
subsequent sections to get started with the Embedded Target for Motorola
MPC555.

1 Getting Started

1-14

Setting Target Preferences
This section describes how to set target preferences associated with the
Embedded Target for Motorola MPC555. These settings persist across
MATLAB sessions and different models. Target preferences let you specify the
location of your MPC555 cross-compiler, the communications port to be used
for downloading code, and other parameters affecting the generation, building,
and downloading of code.

Configuring the Embedded Target
for Motorola MPC555
for Your Cross-Development Toolchain
When you set up the Embedded Target for Motorola MPC555, you must make
sure you localize the settings to suit your PC and cross-development toolchain.
It is important that you set the correct path to your compiler and debugger
using the MPC555 Target Preferences dialog box.

Instructions for setting up specific third-party toolchains for use with the
Embedded Target for Motorola MPC555 are in “Toolchains and Hardware” on
page A-1. Make sure you have followed the instructions to set up your toolchain
first:

• “Setting Up Your Installation with Diab Cross-Compiler and SingleStep
Debugger” on page A-3

- “Setting Target Preferences for Diab and SingleStep” on page A-4. Note
especially the settings you must change if you are not using the Vision
Probe BDM device, the defaults are set up for the Vision Probe.

• “Setting Up Your Installation with Metrowerks CodeWarrior” on page A-7

- “Set Target Preferences for CodeWarrior” on page A-9

You can modify target preference objects via the MPC555 Target Preferences
dialog box:

1 Select Start –> Simulink –> Embedded Target for Motorola MPC555 –>
Target Preferences.

Setting Target Preferences

1-15

This opens the MPC555 Target Preferences dialog box where you can edit
the settings for your cross-development environment. When you first open
the dialog the following settings are visible.

2 Select Diab or CodeWarrior from the drop-down Toolchain menu.

3 Expand ToolChainOptions as shown below (by clicking the plus sign) and
type the correct path into CompilerPath. The following shows Diab options.
Note that the defaults are set up for the Vision Probe — see the Appendix
for settings to use another BDM device, described in “Setting Target
Preferences for Diab and SingleStep” on page A-4.

1 Getting Started

1-16

4 For SingleStep you must also type the correct path into Debugger Path.
This is not necessary for CodeWarrior as the compiler and debugger are
integrated. The example below shows the CodeWarrior preferences.

There are other settings in the target preferences you can see by expanding all
the options, as shown.

Setting Target Preferences

1-17

Serial Communications
These target preferences relate to Processor-in-the-Loop (PIL) cosimulation
only.

• BitRate — Bit rate (in bps) for host/target communications. The default is
57600.

• HostPort — Host serial port for host/target communications. Select from
com1 to com8; the default is com1.

• TargetPort — Target board serial port for host/target communications.
Select from com1 to com8; the default is com1.

• TimeOut — Time-out value (in seconds) for the serial communications port.
The default is 4.

Target Board

• OscillatorFrequency — Choose either 20 MHz (the default) or 4 MHz if you
are using a 4MHz board.

• ProcessorVariant — Here you can select from MPC555, MPC561, MPC562,
MPC563, MPC564, MPC565 or MPC566 to match your target processor. The
default is the MPC555.

When you install bootcode after setting target preferences the correct bootcode
for your chosen target processor and oscillator frequency will be automatically
installed. Note that you also need to make these settings match in your models
for the non-default target processor and oscillator frequency. See
“Configuration for Nondefault Hardware” on page A-14.

1 Getting Started

1-18

CompilerOptimizationSwitches

For both toolchains these settings configure optimizations for speed, size, and
debug. The settings are compiler specific. These properties can be edited from
the MPC555 Target Preferences dialog box or from the Simulation
Parameters dialog box, described below. The defaults should be adequate for
most rapid prototyping purposes.

If you want to alter these settings, consult your compiler documentation for
specific optimizations. To edit the settings,

• If you want your changes to apply to many models, edit them within the
MPC555 Target Preferences dialog box. Your settings will appear within
the Simulation Parameters dialog box in the Compiler optimization
switches field when you select speed, size or debug from the Optimize
compiler for options in the drop-down menu. You must choose MPC555-DK
(real-time) options from the Category menu on the Real-Time
Workshop tab to reach these settings, as shown in the following example.

Setting Target Preferences

1-19

• If you want to customize these settings for a single model, edit them from the
Simulation Parameters dialog box. Optimize compiler for will change to
custom and the defaults for these settings will remain unchanged in the
MPC555 Target Preferences dialog box. When you edit these settings, you
must place single quotation marks at either end of the string. These settings
are then applied to model code.

Use Prebuilt RTW Libraries. This check box option (selected by default) saves a
considerable amount of time during the build process, as the libraries do not
need to be recompiled every time. However, note this uses the defaults we have
chosen for compiler optimization switches. These defaults are designed for
rapid prototyping mode. If you are going to switch to production code
development and want to fine tune the settings, you should clear this check box
option. Then the custom optimization switches you set in the Real-Time
Workshop Simulation Parameters dialog box will be applied to the library
code as well as the model code.

DebuggerSwitches
This setting is specific to SingleStep. See “Setting Target Preferences for Diab
and SingleStep” on page A-4.

1 Getting Started

1-20

Run Test Program
To verify your setup, you can download and run a simple test program on the
phyCORE-MPC555 board:

1 Select Start –> Simulink –> Embedded Target for Motorola MPC555 –>
Run Simple MPC555 Test Application.

2 To answer the question Do you want to run the application? Type y at
the command line.

If you have not set up your target preferences properly the process will stop and
ask you to do this now.

Watch as your toolchain downloads and runs the application on your phyCORE
board. Successful execution results in a blinking LED.

You have now verified your installation and are ready to begin working with
the Embedded Target for Motorola MPC555.

Download Boot Code to Flash Memory
The next step is to download the boot code to flash memory, if you have not
already done so. Normally, you will only need to program the boot code into
flash memory once. After this is done, new application code can be downloaded
as often as required without any changes to the boot code.

The first time you program the boot code into the target hardware, you must
download it via the BDM port. However, if existing boot code is already
programmed into flash memory and must be replaced (for example, with a
newer or modified version) it is also possible to download entirely over CAN or
serial. If you are upgrading from a previous release of Embedded Target for
Motorola MPC555 you must download the new boot code.

If your target does not have bootcode already you can only install new bootcode
with a BDM. See the next section “Installing Bootcode via BDM and Serial or
CAN” on page 1–21. For existing bootcode, you can use a BDM or CAN; with
bootcode from version 1.2 or later you can also download over Serial. See
“Installing Bootcode Without a BDM” on page 1–22.

The first time you use Embedded Target for Motorola MPC555 you must use a
toolchain to download boot code to the MPC555 flash memory. Once the boot
code is loaded into flash memory, you can download code to the processor

Setting Target Preferences

1-21

entirely over serial or the CAN network as described in the tutorials. See
“Overview of Memory Organization and the Boot Process” on page 2-20 for
more information.

Installing Bootcode via BDM and Serial or CAN
To install bootcode, follow these steps:

1 Connect the BDM cable to the target, and a serial or CAN cable. If you do
not have a BDM available, see “Installing Bootcode Without a BDM” on
page 1-22.

2 Select Start –> Simulink –> Embedded Target for Motorola MPC555 –>
Install MPC5xx Bootcode.

A dialog appears asking if you are connected to the target via BDM. Read
the information on the dialog.

3 Click Yes.

Your toolchain is launched and prepares to download.

The Download Control Panel appears.

4 If you are using CAN (the default) you can proceed to step 5. If you are using
serial to connect to the target, click the Communications Options tab in the
Download Control Panel and select Serial from the Connection type
drop-down menu.

5 On the Download tab, click Start Download.

Your development tools execute a command to install the boot code. When the
process stops, the messages in the Download Control Panel complete, and the
Stop Download button reverts to Start Download. The boot code should now
be installed.

1 Getting Started

1-22

Installing Bootcode Without a BDM
If your target does not have bootcode already you can only install new bootcode
with a BDM. For targets with existing bootcode, if you do not have a BDM
available you can install bootcode as follows:

• For a target with R14 bootcode, you can install new bootcode using the Start
menu exactly as described above except step 4 - click No when asked if you
are connected via BDM. The download should complete successfully over
serial or CAN.

• If existing bootcode on the target is version 1.1 (R13+SP1), you can install
bootcode without a BDM if you have CAN. Use the Start menu bootcode
installer as described above and click No when asked if connected by BDM.
The download should complete successfully over CAN.

• If the existing bootcode is earlier than version 1.1 (if it is R12.1 or R13), you
can install bootcode without a BDM if you have CAN. You cannot use the
Download Control Panel. Instead you must use the upgrade model,
can_bootcode_upgrade.mdl.

Once you have successfully downloaded boot code to your target, you have
completed your installation and are ready to use all the features of the
Embedded Target for Motorola MPC555. If necessary, please consult your
toolchain documentation.

We suggest you now turn to Chapter 2, “Generating Stand-Alone Real-Time
Applications” to get hands-on experience with using the Embedded Target for
Motorola MPC555 and your toolchain to generate, download, and execute
application code on your phyCORE-MPC555 board. You can then also work
through the tutorials in Chapter 3, “PIL Cosimulation” to start using
processor-in-the-loop simulation for development via the Embedded Target for
Motorola MPC555.

2
Generating Stand-Alone
Real-Time Applications

This section includes the following topics:

Introduction (p. 2-2) An overview of the Embedded Target for Motorola
MPC555 real-time target, other components required to
generate stand-alone real-time applications, and the
process of deploying generated code on target hardware.

Tutorial: Creating a New Application
(p. 2-4)

A hands-on exercise in building an application from a
demo model, including downloading and executing
generated code on a target board.

Downloading Boot and Application
Code (p. 2-19)

A detailed discussion of the process of downloading code
to the MPC555 RAM and flash memory.

Generating ASAP2 Files (p. 2-30) How to generate ASAP2 files from your model.

Execution Profiling (p. 2-35) How to use the execution profiling utilities to generate
reports and graphical displays for analyzing timer-based
tasks and asynchronous Interrupt Service Routines
(ISRs).

Summary of the Real-Time Target
(p. 2-40)

Summary of the code generation options specific to the
real-time target, and requirements and restrictions that
apply to the current release.

2 Generating Stand-Alone Real-Time Applications

2-2

Introduction
This section describes how to generate a stand-alone real-time application for
the MPC555. The components required to generate stand-alone code are

• The Embedded Target for Motorola MPC555 real-time target

• The MPC555 Resource Configuration object provided in the Embedded
Target for Motorola MPC555 library

• I/O driver blocks provided in the Embedded Target for Motorola MPC555
library

• Utilities for downloading generated code to the target hardware

Using these together with your toolchain, you can build a complete application.
You do not need to hand-write any C code to integrate the generated code into
a final application.

See “Before You Begin” on page 2–4 for information on supported hardware
and toolchains.

The tutorial “Tutorial: Creating a New Application” on page 2-4 uses two
blocks from the Embedded Target for Motorola MPC555 library. For complete
information on the Embedded Target for Motorola MPC555 library blocks, see
Chapter 4, “Block Reference.”

Before reading this section and using the Embedded Target for Motorola
MPC555 library, you should have at least a basic understanding of the
architecture of the MPC555. To learn about the MPC555, we suggest that you
study the MPC555 Users Manual. We recommend that you read the
introduction to the processor and familiarize yourself with all the major
subsystems of the MPC555.You can find this document at the following URL:
http://e-www.motorola.com/webby/asps/library/prod_lib.jsp.

Deploying Generated Code
You can load a generated program into the MPC555 flash memory for
permanent deployment. You can also load your code into external RAM (if
available on your development hardware).

Alternatively, you can use the automatic code generation process for rapid
prototyping and investigate a range of different design alternatives before
making a deployment decision.

Introduction

2-3

Your generated program can run on any Electronic Control Unit (ECU) that is
based on the MPC555 processor. Your application can use any of the supported
MPC555 on-chip I/O devices. We provide driver blocks for the MPC555’s MIOS,
TPU and TouCAN modules, providing you with drivers for the on-chip analog
input, digital I/O, PWM, serial and CAN devices.

See Chapter 4, “Block Reference” for further information on the device driver
blocks in the Embedded Target for Motorola MPC555 library).

In addition to on-chip I/O resources, an ECU typically provides additional I/O
devices. If you want to access such custom I/O devices, you must write device
drivers and integrate them with the automatically generated code. See the
following documentation for details:

• Real-Time Workshop User’s Guide

• Real-Time Workshop Embedded Coder User’s Guide

• Writing S-Functions

Once the application has been programmed into memory on the target system,
you may need to monitor signals or tune parameters. The Embedded Target for
Motorola MPC555 supports signal monitoring and parameter tuning via the
CAN Calibration Protocol (CCP). To enable CCP, you must include a CAN
Calibration Protocol block in your model. The CAN Calibration Protocol block
implementation of CCP has been tested against CANape from
Vector-Informatik and ATI Vision. See “CAN Calibration Protocol (MPC555)”
on page 4-18 for further information.

2 Generating Stand-Alone Real-Time Applications

2-4

Tutorial: Creating a New Application
In this tutorial, we will build a stand-alone real-time application from a model
incorporating blocks from the Embedded Target for Motorola MPC555 library.
We assume that you are already familiar with Simulink and with the
Real-Time Workshop code generation and build process.

In the following sections, we will

• Configure the model

• Generate code from a subsystem

• Download code by one of the following methods:

- Download to target RAM via a serial connection, using the Download
Control Panel utility (provided with the Embedded Target for Motorola
MPC555)

- Download to target RAM via a CAN connection, using the Download
Control Panel utility

- Download to target RAM via a BDM connection

• Execute the code on the target

After you complete this tutorial, you may want to learn how to deploy
generated code into the MPC555 flash memory. See “Downloading Boot and
Application Code” on page 2-19 for that information.

Before You Begin
This tutorial requires the following specific hardware and software in addition
to the Embedded Target for Motorola MPC555:

• Phytec phyCORE-MPC555 development board

The tutorial model utilizes two LEDs on the phyCORE-MPC555 board.
These LEDs are connected to pins MPIO32B0 and MPIO32B1 on the MPC555
MIOS digital output pins. If you are using a different development board,
you may be able to obtain the same functionality by making similar
connections.

Tutorial: Creating a New Application

2-5

• A supported toolchain for compiling and debugging. Currently supported
toolchains are

- Diab and SingleStep from Wind River Systems

- CodeWarrior from Metrowerks

See “Setting Up Your Toolchain” on page A-2 for details.

• Hardware to enable downloading:

- If you want to download generated code to the target board over serial you
will need a serial cable to connect your host PC to the target board.

- If you want to download over BDM you will need a BDM device.

- If you want to download via CAN, you will need a supported CAN card and
drivers from Vector-Informatik. See “CAN Hardware and Drivers” on
page A-13.

Configuring the Embedded Target for Motorola MPC555
• Make sure that your target preferences are set correctly for your

development tools. See “Setting Target Preferences” on page 1-14.

• Once your target preferences are set for your toolchain you must download
bootcode to the target before you can work through this tutorial. See
“Download Boot Code to Flash Memory” on page 1-20.

2 Generating Stand-Alone Real-Time Applications

2-6

The Example Model
In this tutorial we will use a simple example model, mpc555rt_led, from the
directory matlabroot/toolbox/rtw/targets/mpc555dk/mpc555demos.

This directory is on the default MATLAB path. The path matlabroot is the
location where MATLAB is installed:

1 Open the model.

mpc555rt_led

2 Save a local copy to your working directory. We will work with this copy
throughout this exercise.

Figure 2-1 shows the example model at the root level. We will only use this
level in simulation.

Figure 2-1: mpc555rt_led_demo Model, Root Level

3 Double-click on the Target_LED subsystem block.

Figure 2-2 shows the Target_LED subsystem, from which we will generate
code.

Tutorial: Creating a New Application

2-7

Figure 2-2: Target_LED Subsystem

In the Target_LED subsystem, two square wave signals are multiplexed and
routed to the MIOS Digital Out block. The MIOS Digital Out block accepts a
vector of numbers representing pins 0-15 on the MIOS 16-bit Parallel Port I/O
Submodule (MPIOSM) on the MPC555. As the square wave signals oscillate
between 0 and 1, the MIOS Digital Out block writes corresponding logic values
to the appropriate pin on the port.

This figure shows the parameters of the MIOS Digital Out block.

2 Generating Stand-Alone Real-Time Applications

2-8

The Bits field is set to the vector [0 1]. The block maps this vector to the
MPC555 MIOS digital output pins MPIO32B0 and MPIO32B1. When the
application runs, it will send a pulse signal to these output pins. On the
phyCORE-MPC555 board, these signals are connected to two of the LEDs,
which will switch on and off at the frequency set in the respective pulse
generator blocks.

In addition to the Pulse Generator, Mux, MIOS Digital Out, and Output blocks,
the Target_LED subsystem contains a MPC555 Resource Configuration object.
When building a model with driver blocks from the Embedded Target for
Motorola MPC555 library, you must always place a MPC555 Resource
Configuration object into the model (or the subsystem from which you want to
generate code) first.

The purpose of the MPC555 Resource Configuration object is to provide
information to other blocks in the model. Unlike conventional blocks, the
MPC555 Resource Configuration object is not connected to other blocks via
input or output ports. Instead, driver blocks (such as the MIOS Digital Out
block in the example model) query the MPC555 Resource Configuration object
for required information.

For example, a driver block may need to find the system clock speed that is
configured in the MPC555 Resource Configuration object. The MPC555 has a
number of clocked subsystems; to generate correct code, driver blocks need to
know the speeds at which these clock busses will run.

The MPC555 Resource Configuration window lets you examine and edit the
MPC555 Resource Configuration settings. To open the MPC555 Resource
Configuration window, double-click on the MPC555 Resource Configuration
icon. This picture shows the MPC555 Resource Configuration window for the
Target_LED subsystem.

Tutorial: Creating a New Application

2-9

In this tutorial, we will use the default MPC555 Resource Configuration
settings. Observe, but do not change, the parameters in the MPC555 Resource
Configuration window. To learn more about the MPC555 Resource
Configuration object, see “MPC555 Resource Configuration” on page 4-41.

Close the MPC555 Resource Configuration window before proceeding.

The next step in this tutorial is generating code.

Generating Code
We will now look at settings and then generate application code:

1 Select Simulation –> Configuration Parameters. The Configuration
Parameters dialog opens.

2 Generating Stand-Alone Real-Time Applications

2-10

2 Select the Real-Time Workshop tab, as shown below.

3 Notice the RTW system target file for real-time deployment is
mpc555rt.tlc.

To see how to change from real-time deployment to processor-in-the-loop or
algorithm export, click on the Browse button to open the System Target
File Browser. In the browser, observe the three Embedded Target for
Motorola MPC555 options. Click Cancel to keep the default real-time setting
and return to the Real-Time Workshop pane.

4 Select the ET MPC555 real-time options (1) tab (use the buttons at top
right to scroll through the tabs). The RAM option should be selected from the
Target memory model menu. This option directs Real-Time Workshop to

Tutorial: Creating a New Application

2-11

generate a code file suitable for downloading and execution in RAM. The
files for both RAM and flash are in Motorola S-record format.

Leave the options set to their defaults. The code generation options should
appear as shown below (though optimization switches settings vary between
toolchains).

5 You are now ready to build the application. Do this by right-clicking on the
Target_LED subsystem and selecting Real-Time Workshop –> Build
subsystem. Then click the Build button in the following dialog.

6 On successful completion of the build process, two files are created in the
working directory:

a Target_LED_ram.s19: This file is for serial or CAN download. It is code
only, without symbols, suitable for execution on the target system.

b Target_LED_ram.elf: This file is for BDM download.

If debug is selected in the compiler optimization settings, the elf file will
contain debugging symbols as well as code. These symbols are suitable for
use with a symbolic debugger such as Wind River SingleStep or
Metrowerks CodeWarrior. The default optimization setting is speed, so
no symbols are included. Symbols are only generated for a debug build.
See “CompilerOptimizationSwitches” on page 1–18.

2 Generating Stand-Alone Real-Time Applications

2-12

 You can download to RAM:

- Via Serial or CAN, using the Download Control Panel utility (with
Vector-Informatik hardware if you are using CAN), as described in
“Downloading the Application to RAM via Serial or CAN” on page 2-12.

- Via the BDM port, as described in “Downloading the Application to RAM
via BDM” on page 2-16.

Downloading the Application to RAM via Serial or
CAN
The Download Control Panel utility can be used to download application code
to MPC555 RAM or to MPC555 flash memory.

In this section, you will use the Download Control Panel utility to download the
generated Target_LED_ram.s19 file to RAM on the target system. The s19 file
is for download over serial or CAN.

Target_LED_ram.elf is for BDM download, as described in the next section,
“Downloading the Application to RAM via BDM” on page 2–16. Recall you can
perform a debug build to include debugging symbols in the elf file.

Do the following before you begin:

• If you are using serial, make sure you have connected the serial port on your
PC to serial port 1 (RS232-1) on the target hardware.

• If you are using CAN, make sure that your Vector-Informatik CAN card and
drivers are installed and configured properly. See “CAN Hardware and
Drivers” on page A-13. Make sure that the desired CAN port on the PC card
is connected to the CAN A port on the target hardware.

• Make sure that you have set up your toolchain as described in “Toolchains
and Hardware” on page A-1, and downloaded boot code to the flash memory
of the MPC555 as described in “Download Boot Code to Flash Memory” on
page 1–20.

• Make sure that nothing is connected to the BDM port of your development
board.

• Make sure that the jumpers on the phyCORE-MPC555 board are set as
described in “Phytec Jumper Settings” on page A-10.

• Cycle the power (or perform a hard reset) on your development board, to
clear the RAM.

Tutorial: Creating a New Application

2-13

To download the generated Target_LED_ram.s19 file to RAM:

1 Start the Download Control Panel in one of the following ways:

- Use the MATLAB Start menu. Select Start –> Simulink –> Embedded
Target for Motorola MPC555 –> Launch Download Control Panel.

- Type embedded_target_download at the MATLAB command prompt.

- You can also open the Download Control Panel automatically at the end
of the build process. Before you start the build, you can select Launch
Download Control Panel from the Build action options on the ET MPC555
real-time options (1) tab of the Model Explorer. You can see an
illustration of this tab in step 4 of “Generating Code” on page 2-9.

2 After using any of these three options, the Download Control Panel dialog
opens.

Note RAM application code is automatically selected in the Download
menu. You can use exactly the same process to download application code to
flash memory by changing this option to Flash application code. Note
that you need to build a model_flash.s19 file in order to use this option, as
described in “Downloading Application Code to Flash Memory via Serial or
CAN” on page 2-23. For this exercise leave the RAM option selected.

2 Generating Stand-Alone Real-Time Applications

2-14

3 Enter the name of the file to be downloaded into the Filename field, in this
case, Target_LED_ram.s19. Alternatively, you can use the browse button
(right of the edit box) to navigate to the desired file. The Download Control
Panel should now appear as shown in this picture.

4 Click on the Communications Options tab.

- If you are using serial, select Serial from the Connection Type
drop-down menu. Select the appropriate host PC connection port from
Com1 to Com4. You can save your preferences by clicking the Save
Preferences button.

- If you are using CAN, select CAN from the Connection Type drop-down
menu. Select an appropriate card and port from the CAN hardware
drop-down menu. The default settings for the other parameters are
appropriate for most cases. You can save your preferences by clicking the
Save Settings button. The following picture shows the Communications
Options configured for a Vector-Informatik CANAC2pci card, channel 1.

Tutorial: Creating a New Application

2-15

5 Click the Download tab. Then click the Start Download button.

When you click Start, the Download Control Panel's Status box changes
to read Press reset or power-cycle your development board to start
download.

6 Press the Reset button on your PhyCORE-MPC555 board (or cycle the
power). The Download Control Panel changes its Status box to read
Connection OK. Please wait till completion or press Stop to
terminate the download.

Downloading commences, and the Start button caption changes to Stop.

7 While downloading proceeds, progress messages are displayed in the
Download Control Panel. A dialog appears to inform you the download
completed successfully. After the download, the Stop button caption
changes back to Start.

If the download does not succeed, reset your development board and return
to step 5.

8 Close the Download Control Panel dialog.

2 Generating Stand-Alone Real-Time Applications

2-16

9 A few seconds after a successful download, the boot code transfers control to
the application program. At this point, you should see two LEDs (red and
green) blinking on the target board. This indicates that the program is
operating correctly.

Note that you can monitor the progress of a CAN download using a program
such as CANalyzer. Alternatively, you can use the btest32 utility supplied
with the Vector Informatik driver software. You can invoke the btest32 utility
from the PC command prompt. The following example runs btest32 with a bit
rate of 500000 (500 kbaud):

btest32 500000

Downloading the Application to RAM
via BDM
You can choose to automatically download to the target over BDM on
completion of the build process. Follow these steps to generate, download and
execute the Target_LED_ram.elf file to RAM on the target system.
Target_LED_ram.elf can contain both code and symbols for use with the
debugger if you perform a debug build. You will not perform a debug build in
this tutorial, so the file will contain code only.

You can use Embedded Target for Motorola MPC555 to download application
code via BDM to MPC555 RAM only.

If you want to download application code to MPC555 flash you can use serial or
CAN. The download process is exactly the same as described in “Downloading
the Application to RAM via Serial or CAN” on page 2-12, except you change the
Download option from RAM to Flash. Note that you also need to generate a
model_flash.s19 file to download to flash memory, as described in
“Downloading Application Code to Flash Memory via Serial or CAN” on
page 2-23. If you want to download the application to flash memory over BDM
manually using your own tools, then the file you need to download is the
S-record file *.s19.

Do the following before you begin:

• Make sure that you have downloaded boot code to the flash memory of the
MPC555. See “Download Boot Code to Flash Memory” on page 1–20.

Tutorial: Creating a New Application

2-17

• Connect the BDM port of your development board to parallel port LPT1 of
your host PC (or the port specified for your toolchain if different, see “Setting
Up Your Toolchain” on page A-2).

• Make sure that the jumpers on the phyCORE-MPC555 board are set as
described in “Phytec Jumper Settings” on page A-10.

To generate and download the Target_LED_ram.elf file to RAM over BDM,

1 Select Simulation –> Simulation Parameters.

The Model Explorer window appears. Make sure Configuration is selected
under the model name in the tree.

2 Click RTW to activate the Real-Time Workshop pane.

3 On the Real-Time Workshop pane, select the MPC555-DK (real-time) tab.

4 Select Run_via_BDM or Debug_via_BDM from the Build action drop-down
menu.

5 Ensure the Target memory model selected is RAM (not FLASH).

Notice the default Optimize compiler for setting is speed. If you change
this setting to debug, the generated elf file will contain both code and
symbols for use with a symbolic debugger. See
“CompilerOptimizationSwitches” on page 1–18 for more information on
these settings. For this tutorial, leave this setting at the default, as shown.

2 Generating Stand-Alone Real-Time Applications

2-18

6 Right click on the Target_LED subsystem and select Real-Time Workshop
–> Build Subsystem.

You will see progress messages in the MATLAB Command Window as code is
generated. Your debugger will be automatically started and will download the
code to the target.

Also available is the Start menu option Debug RAM base application. Use
this option to select a *.elf file and debug over BDM as described above. You
can use this option to debug a model you have already built without having to
go through the build process again.

Downloading Boot and Application Code

2-19

Downloading Boot and Application Code

RAM vs. Flash Memory
The Embedded Target for Motorola MPC555 creates a file containing the
application executable code that must be programmed onto the MPC555. It can
also write a file including symbolic information suitable for use with a
debugger. The files are written to your working directory.

The format of the code and symbol files is the same for both RAM and flash
memory targets, suitable for downloading into RAM or on-chip flash memory.
The naming convention for these files is

• model_flash.s19 or model_ram.s19 (for serial and CAN download)

• model_flash.elf or model_ram.elf (for BDM download, can contain
debugging symbols).

You can download code to RAM or flash memory via serial or CAN download,
or via the MPC555’s BDM port.

There are advantages and disadvantages to each memory model.

Loading the application code into RAM is faster than loading it into flash
memory. In addition, by using RAM you can avoid using up the programming
cycles of the flash memory; this lengthens the usable lifetime of the flash
memory. Running the application from RAM is a good option for initial testing
of the application.

To program applications into RAM, your target hardware must have additional
RAM external to the MPC555 on-chip RAM. The Embedded Target for
Motorola MPC555 does not support downloading of code to MPC5xx on-chip
RAM, because the MPC555 has only 26K of on-chip RAM and the MPC565 has
36K.

For final deployment, or to load code onto a test board for use at a test site, you
will generally want to program your code into the nonvolatile flash memory.
416K of flash memory is available for application code (992K on the MPC565).
Code programmed into flash memory is persistent and restarts when the board
is powered on.

To download code to flash memory, you must first load a binary boot code file
into the flash memory. The Embedded Target for Motorola MPC555 provides
the boot code file. You must load the boot code into flash memory in order to

2 Generating Stand-Alone Real-Time Applications

2-20

run application code. The boot code is always required even for RAM
applications.

To understand the download process, it is first necessary to review the memory
organization on the MPC555 and the operation of the boot code. This is
described in the next section, “Overview of Memory Organization and the Boot
Process” on page 2-20:

• If you just want to know how to download application code, you can jump
ahead to the section “Downloading Application Code” on page 2-22.

• If you want to know how to download boot code, see the Getting Started
section “Download Boot Code to Flash Memory” on page 1-20.

Overview of Memory Organization
and the Boot Process

Purpose of Flash Memory Boot Code
When reading this section, you may want to refer to the internal memory map
of the MPC555 in section 1.3 of the MPC555 User’s Guide. You can find this
document at the following URL.
http://e-www.motorola.com/webapp/sps/library/prod_lib.jsp

To run generated code from the flash memory, you must load the first 32K flash
sector with boot code. The primary purpose of the boot code is to load and start
application code when the board is powered on or reset. The boot code also acts
as a download agent that downloads generated code into flash memory via
CAN or serial.

The boot code manages the exception handling for the MPC555. Applications
don't directly handle exceptions but receive them from the boot code. If the boot
code is not installed, then applications will not work correctly.

Memory Organization
The MPC555 has a total of 448K of on-chip flash memory (1024K on the
MPC565). This memory is organized into banks of 32K each. The first bank is
always used to store the boot code and the remaining 416K is available for
application code (992K on the MPC565). When using the Embedded Target for
Motorola MPC555, the on-chip flash memory is located at absolute address
0x0000 in the MPC555 address space.

Downloading Boot and Application Code

2-21

Figure 2-3: Organization of Flash Memory

To run a stand-alone application on the MPC555, it is first necessary to
program the boot code into the first bank of flash memory.

The Boot Process
The boot code is executed following power on or reset (unless a probe is
connected to the BDM port). Normally, the boot code performs basic hardware
initialization and then branches to the application code. Once the application
code is running, there is no way to return to the boot code except by performing
a reset.

One of the important functions of the boot code is to serve as agent that allows
program code to be downloaded over CAN or serial. There are two methods of
initiating a program download over CAN or serial:

• The default method for initiating a flash download is to send a special serial
or CAN message during a short window of time while the boot code is
executing. In the supplied boot code, this window is set to 40ms. If this
special message is received during the window while the boot code is
executing, a program download sequence commences and a new application
can be programmed into flash memory. See “Downloading Application Code
to Flash Memory via Serial or CAN” on page 2-23 for details.

• Alternatively, it is possible to commence a flash download over CAN while
application code is running on the target. To initiate a download over CAN,
you must include a special block in your Simulink model. This block is the

Boot Code

Application
Code

OxOOOO

Ox8OOO

Ox7OOOO

2 Generating Stand-Alone Real-Time Applications

2-22

CAN Calibration Protocol block. See “Downloading Boot or Application Code
via CAN Without Manual CPU Reset” on page 2-26 for details.

Downloading Application Code
The following sections describe how to download generated image files and run
generated code on the target hardware. They also describe how to download to
RAM and to flash memory, via either serial, CAN, or the BDM port.

Downloading the Application Code to RAM
To download application code to RAM, you must generate a code file in
Motorola S-Record format, which is suitable for downloading and execution in
RAM. To do this, select the RAM option from the Target memory model menu
in the MPC555-DK (real-time) options category of the Real-Time Workshop
pane (of the Configuration in the Model Explorer). The build process creates
two files in the working directory:

- model_ram.s19: For serial or CAN download. Code only, without symbols,
suitable for execution on the target system.

- model_ram.elf: For BDM download. Can also contain symbols if you
perform a debug build, suitable for use with a symbolic debugger such as
Wind River SingleStep.

• You can download to RAM via serial or CAN, using the Download Control
Panel utility (with Vector-Informatik CAN hardware if applicable), as
described in “Downloading the Application to RAM via Serial or CAN” on
page 2-12.

• You can also download to RAM via BDM, as described in “Downloading the
Application to RAM via BDM” on page 2-16.

Downloading the Application Code to Flash Memory
To download application code to flash memory, you must generate a code file
which is suitable for downloading and execution in flash memory. To do this,
select the FLASH option from the Target memory model menu in the
MPC555-DK (real-time) options category of the Real-Time Workshop pane.
The build process creates the file model_flash.s19 which contains an image of
the executable code, in the working directory.

You can download the file to flash memory via serial or CAN, using the
Download Control Panel utility (with Vector-Informatik hardware if using

Downloading Boot and Application Code

2-23

CAN), as described in the following section. Note you cannot use BDM to
automatically download application code to flash memory. If you want to
download the application to flash memory over BDM manually using your own
tools, then the file you need to download is the S-Record file *.s19.

Note that you can use the Download Control Panel utility separately as a
stand-alone application from MATLAB. For instructions, run this command

!D:\matlabroot\toolbox\rtw\targets\common\general\embedded_targe
t_download.bat -help

where matlabroot is the full path to your matlab installation directory, on
drive D: in this example.

Downloading Application Code to Flash Memory via Serial or CAN
You can use the Download Control Panel to download generated application
code to the MPC555 flash memory. Note that except for changing the
Download option from RAM to Flash, the process is the same as downloading to
RAM.

Do the following before you begin:

• If you are using serial, make sure you have connected the serial port on your
PC to serial port 1 (RS232-1) on the target hardware.

• If you are using CAN, make sure that your Vector-Informatik CAN card and
drivers are installed, and are configured properly. See “CAN Hardware and
Drivers” on page A-13. Make sure that the desired CAN port on the PC card
is connected to the CAN A port on the target hardware.

• Make sure that you have set up your toolchain and downloaded boot code to
the flash memory of the MPC555, as described in “Setting Up and Verifying
Your Installation” on page 1–13.

• Make sure that nothing is connected to the BDM port of your development
board.

• Make sure that the jumpers on the phyCORE-MPC555 board are set as
described in “Phytec Jumper Settings” on page A-10.

To download the generated model_flash.s19 file to flash:

1 Open the Download Control Panel in one of the following ways:

2 Generating Stand-Alone Real-Time Applications

2-24

- Use the MATLAB Start menu. Select Start –> Simulink –> Embedded
Target for Motorola MPC555 –> Launch Download Control Panel.

- Type embedded_target_download at the MATLAB command prompt.

- You can also open the Download Control Panel automatically at the end
of the build process. Before you start the build process, you can select
Launch Download Control Panel from the Build action options on the
ET MPC555 real-time options (1) tab of the Model Explorer. You can
see an illustration of this tab in step 4 of “Generating Code” on page 2-9.

After using any of these three options, the Download Control Panel
window opens.

2 Select Flash application code from the Executable type menu.

3 Enter the name of the file to be downloaded into the Executable filename
field. Alternatively, you can use the browse button to navigate to the desired
file. Remember the model_flash.s19 files are for serial or CAN download to
flash. The Download Control Panel should now appear as shown in this
picture.

4 Click on the Communications Options tab. If you have not saved your
preferences already, select Serial or CAN from the Connection Type
drop-down menu. If necessary, select an appropriate card/port. The default

Downloading Boot and Application Code

2-25

settings for the other parameters are appropriate for the default boot
process. You can save your preferences by clicking the Save Preferences
button. The Communications Options configured for a Vector-Informatik
CAN-AC2-PCI card, channel 1, are shown in the section “Downloading the
Application to RAM via Serial or CAN” on page 2-12.

5 The next step is to download code. Click the Download tab, and then click
the Start button.

- If there is an application currently running on the target that contains a
CAN Calibration Protocol (CCP) kernel, the download proceeds
automatically. For more details see “Downloading Boot or Application
Code via CAN Without Manual CPU Reset” on page 2-26.

- If the CCP condition is not met, you must immediately press the reset
button on your PhyCORE-MPC555 board after clicking the Start button.
You will see a message prompt in the Status box: Press reset or
power-cycle your development board to start download.

When you press the Reset button on your PhyCORE-MPC555 board (or
cycle the power), the Download Control Panel changes its Status box to
read CCP Connection OK. Please wait till completion or press Stop
to terminate the download.

Downloading commences, and the Start button caption changes to Stop.
While downloading proceeds, progress messages are displayed in the
Download Control Panel. A successful download ends with an information
dialog and the Stop button caption changes back to Start.

6 If the download does not succeed, reset the board and return to step 5.

You can monitor the progress of the flash download over CAN by using a
program such as CANalyzer. Alternatively, you can use the btest32 utility
supplied with the Vector Informatik driver software. You can invoke the
btest32 utility from the PC command prompt. The following example runs
btest32 with a bit rate of 500000 (500kbaud):

btest32 500000

7 Close the Download Control Panel window.

Once the download process is complete, the application starts running
immediately on the target hardware.

2 Generating Stand-Alone Real-Time Applications

2-26

Downloading Boot or Application Code via CAN
Without Manual CPU Reset
The default method for download over CAN requires that the target processor
be manually reset in order for the download process to begin. This requirement
may be problematic if the target hardware is not physically accessible or if it
cannot be individually reset or powered down/up.

It is possible to remove this requirement for manual reset if a suitably prepared
application is already running on the target. To do this, include a CAN
Calibration Protocol block within the model (See “CAN Calibration Protocol
(MPC555)” on page 4-18).

Note To use the CAN Calibration Protocol block you need Stateflow and
Stateflow Coder.

When the currently running application includes the CAN Calibration Protocol
block, the download process begins when you click on the Start button of the
Download Control Panel; it is not necessary to manually reset the target
hardware to initiate the download. A reset of the processor is triggered by a
CCP Program Prepare message. After the Program Prepare message is
received at the target, there will be a short delay until the processor resets and
continues the download process by transmitting a response to the Program
Prepare message.

The length of the delay will be the watchdog timeout period of the application.
By default, for a 20MHz application, this will be approximately 7 seconds; for
a 40MHz application, this will be approximately 3 seconds.

It is possible to explicitly set the timeout period of the watchdog timer, by using
the Watchdog block in the MPC555 device driver library. See “Watchdog” on
page 4-115.

The Download Control Panel is configured to allow a maximum delay of 10
seconds between sending the Program Prepare message and receiving a
response from the target. If this delay is exceeded, an error will be reported by
the download tool.

When using the CAN Calibration Protocol block, you must specify

• CAN message identifier for Command Receive Objects

Downloading Boot and Application Code

2-27

• CAN message identifier for Data Transmit Objects

• Can Calibration Protocol Station Address

Note that the values specified may differ from the default values for these
parameters that are programmed in the boot code. When performing the
download procedure using the Download Control Panel, you must ensure that
the parameters specified on the Communications Options tab match those
specified in the currently running application.

For an example of how to use the CAN Calibration Protocol block for signal
monitoring, parameter tuning and automatic download, see the demo model
mpc555rt_ccp. For instructions, click the link “MPC555 CCP Demo” or to see
information on all demos, at the command line enter

demo simulink 'Embedded Target for Motorolafi MPC555'

Boot Code Parameters for CAN Download
The boot code parameters for download over CAN determine

• CAN bit rate

• CAN message identifier for Command Receive Objects (CRO)

• CAN message identifier for Data Transmit Objects (DTO)

• CAN Calibration Protocol Station Address

• The duration of the window during which the boot code listens for a download
command message

Table 2-1 shows the default values for these parameters. These defaults should
be suitable for most applications.

Table 2-1: Default Boot Code Parameters

Parameter Default Value

CAN bit rate 500000

CCP station address 1

CAN message identifier (CRO) 6FA

2 Generating Stand-Alone Real-Time Applications

2-28

You cannot change the default boot code parameter values except by modifying
and recompiling the boot code. If it is absolutely necessary to do this, you can
recompile the boot code as follows:

1 Select Start –> Simulink –> Embedded Target for Motorola MPC555 –>
Build MPC555 Driver Library.

The Build Driver Libraries dialog opens.

2 Select the compiler optimization setting you want to use for the build (from
speed, size, debug, or clean).

CAN message identifier (DTO) 6FB

Duration of listening window 40 ms

Table 2-1: Default Boot Code Parameters

Parameter Default Value

Downloading Boot and Application Code

2-29

- See “CompilerOptimizationSwitches” on page 1–18 for more information
on the speed, size and debug settings, which are compiler-specific. You
can edit these settings in the Target Preferences dialog.

- The clean option deletes all object files. Note that to ensure a rebuild of all
files you should run a clean build followed by a build using your required
optimization setting. Otherwise only files which have changed since last
library build will be rebuilt.

Embedded Target for Motorola MPC555 automatically recompiles the code,
using your settings in target preferences.

Note You should not make changes to the boot code without fully
understanding the effect of your changes. Note also that the boot code may be
changed without notice in future releases of this product.

2 Generating Stand-Alone Real-Time Applications

2-30

Generating ASAP2 Files
ASAP2 is a data definition standard proposed by the Association for
Standardization of Automation and Measuring Systems (ASAM). ASAP2 is a
standard description you use for data measurement, calibration, and
diagnostic systems. The Embedded Target for Motorola MPC555 real-time
target lets you export an ASAP2 file containing information about your model
during the code generation process.

Before you begin generating ASAP2 files with the Embedded Target for
Motorola MPC555 real-time target, you should read the “Generating ASAP2
Files” section of the Real-Time Workshop Embedded Coder documentation.
That section describes how to define the signal and parameter information
required by the ASAP2 file generation process.

The process of generating an ASAP2 file from your model with Embedded
Target for Motorola MPC555 real-time target is similar to that described in the
Real-Time Workshop Embedded Coder documentation.

The mpc555rt_ccp demo provides an example of the Embedded Target for
Motorola MPC555 ASAP2 file generation feature.

How the Process Works
The Embedded Target for Motorola MPC555 generates an initial ASAP2 file
during the code generation process. At this point, the addresses of signals and
parameters on the target system are unavailable, since the code has not been
compiled and linked. The initial ASAP2 file contains placeholders for the
unresolved addresses.

To supply the required memory addresses, the generated code must be
compiled and the compiler must generate a MAP file.

After the build process, if the Embedded Target for Motorola MPC555 real-time
target detects the presence of the ASAP2 file and a MAP file in the required
format, it performs a post-processing phase. During this phase, the MAP file is
used to propagate the required address information back into the ASAP2 file.

MAP file formats differ between compilers, so the post processing phase is
compiler-specific. The Embedded Target for Motorola MPC555 provides the
post-processing mechanism for both supported toolchains (Diab and
CodeWarrior).

Generating ASAP2 Files

2-31

To use the Embedded Target for Motorola MPC555 ASAP2 file generation
feature, you simply need to select the Generate ASAP2 file option in Real-Time
Workshop. as described in the following section “ASAP2 File Generation
Procedure” on page 2–31. If it is appropriate to back propagate addresses from
the MAP file into the ASAP2 file, then this will also be done automatically. No
other steps are necessary to ensure that the generated MAP and ASAP2 files
are automatically post processed.

The names of the ASAP2 file and the MAP file derive from the source model.
The MAP file is generated in the same directory as the source model. The
ASAP2 file is written to the build directory.

ASAP2 File Generation Procedure

1 Create the desired model. Use appropriate parameter names and signal
labels to refer to ASAP2 CHARACTERISTICS and MEASUREMENTS respectively.

2 Define the corresponding ASAP2.Parameter and ASAP2.Signal objects in the
MATLAB workspace.

3 Configure the data objects to generate unstructured global storage
declarations in the generated code by assigning one of the following storage
classes to the RTWInfo.StorageClass property for each object:

- ExportedGlobal
- ImportedExtern
- ImportedExternPointer

ExportedGlobal is the default storage class.

4 Configure the other data object properties such as LongID_ASAP2,
PhysicalMin_ASAP2, etc., for each object.

5 In your model window, select the menu item Simulation –> Configuration
Parameters.

The Configuration Parameters dialog appears.

6 Select the Optimization tab.

2 Generating Stand-Alone Real-Time Applications

2-32

7 Select the Inline parameters option.

Note that you should not configure the parameters associated with your data
objects in the Model Parameter Configuration dialog box (reached via the
Configure button). If a parameter that resolves to a Simulink data object is
configured using the Model Parameter Configuration dialog box, the
dialog box configuration is ignored. You can, however, use the Model
Parameter Configuration dialog to configure other parameters in your
model.

8 Select the Real-Time Workshop tab.

9 Select the Interface tab (use the buttons at top right to scroll through the
Real-Time Workshop tabs).

10 Select the ASAP2 option from the Interface drop-down menu, in the Data
exchange frame, as shown following.

Generating ASAP2 Files

2-33

11 Click Apply.

12 Click Build.

The ASAP2 file is generated as part of the build process.

Data Acquisition (DAQ) List Configuration
The Embedded Target for Motorola MPC555 supports the Data Acquisition
(DAQ) List feature of the CAN Calibration Protocol (CCP). DAQ lists allow
efficient synchronous signal monitoring. The CCP block provided with the
Embedded Target for Motorola MPC555 supports DAQ lists (see “CAN
Calibration Protocol (MPC555)” on page 4-18 for details).

2 Generating Stand-Alone Real-Time Applications

2-34

ASAP2.Signal objects are used for monitoring a signal in the CCP polling mode
of operation. To monitor a signal in a DAQ list, however, you must configure
the signal somewhat differently. The differences are as follows:

• Instead of defining an ASAP2.Signal in the MATLAB workspace (and
associated signal in the Simulink model), define a canlib.Signal object
instead.

• There is no need to set the RTWInfo.StorageClass property of the
canlib.Signal object. By default, the storage class is set to Custom.

• You should enter data in the other fields of the canlib.Signal object in the
same way you would do for an ASAP2.Signal object.

During code generation, the Embedded Target for Motorola MPC555
automatically determines how to configure the DAQ lists in the generated code.
For each distinct sample rate (of the set of canlib.Signal objects assigned by
the user) one DAQ list in the model is created. The CCP DAQ List Object
Descriptor Tables (ODTs) are shared equally between the created DAQ lists.

The sample rates of the canlib.Signal objects are mapped to CCP event
channels in an extra file, DAQ_LIST_EVENT_MAPPINGS, that is generated in the
build directory. This shows how to assign event channels to MEASUREMENT
signals in a calibration package.

The event channels periodically transmit events that are used to trigger the
sending of DAQ data to the host. By assigning event channels as defined in
DAQ_LIST_EVENT_MAPPINGS, consistent and efficient transmission of DAQ data
is achieved.

It is the responsibility of the calibration tool (see “Compatibility with
Calibration Packages” on page 4-23) to assign an event channel and data to the
available DAQ lists using CCP commands, and to interpret the synchronous
response.

It is the responsibility of the user to make sure the calibration tool is set up
correctly and that the event channels assigned to MEASUREMENT signals
correspond to those defined in the file DAQ_LIST_EVENT_MAPPINGS.

Execution Profiling

2-35

Execution Profiling
The Embedded Target for Motorola MPC555 provides a set of utilities for
recording, uploading and analyzing execution profile data for timer-based
tasks and asynchronous Interrupt Service Routines (ISRs). With these
utilities, you can

• Generate a graphical display that shows when timer-based tasks and
interrupt service routines are activated, preempted, resumed and completed.

• Generate a report with information on

- Maximum number of overruns for each timer-based task since model
execution began

- Maximum turnaround time for each timer-based task since model
execution began

- Analysis of profiling data for timer-based tasks and asynchronous
interrupts over a period of time

You can use the demo model mpc555_multitasking to see an example. This
demo model illustrates both execution profiling and the preemptive
multitasking scheduler with configurable overrun handling. For instructions,
click the link “MPC555 Multitasking Demo”, or to see information on all demos,
at the command line enter

demo simulink 'Embedded Target for Motorolafi MPC555'

To perform execution-profiling analysis on a model, you must perform the
following steps:

1 Depending on whether you are using serial or CAN, place a copy of the
appropriate execution profiling block in your model (MPC555 Execution
Profiling via SCI1 or MPC555 Execution Profiling via CAN A).

2 Connect a serial or CAN cable between the target processor and your host
PC.

3 Check the box to enable Execution profiling in Real-Time Workshop options.
See “Real Time Workshop Options for Execution Profiling” on page 2–37.

4 Build, download and run the model.

5 Initiate execution profiling by running one of the following commands:

2 Generating Stand-Alone Real-Time Applications

2-36

- profile_mpc555 serial

- profile_mpc555 can

Two forms of execution profiling are provided:

1 The worst-case values for task turnaround times and number of task
overruns since model execution began are updated whenever a previous
worst-case value is exceeded.

2 A snapshot of task and ISR activity may be recorded over a period of time;
the length of this period depends on how much memory is available to log
the data.

Execution Profiling Definitions
Task turnaround time is the elapsed time between start and finish of a task.
If the task is not preempted then the task turnaround time is equal to the task
execution time.

Task execution time is that part of the time between task start and finish
when the task is actually running and not preempted by another task. Note
that the task execution time cannot be measured directly, but is inferred from
the task start and finish time and the intervening periods during which it was
preempted by another task. Note that, in performing these calculations, no
account is taken of processor time consumed by the scheduler while switching
tasks: this means that, in cases where preemption has occurred, the reported
task execution times will overestimate the true values.

Task overruns occur when a timer task does not complete before that same
task is next scheduled to run. Depending on how the real-time scheduler is
configured, a task overrun may be handled as a real-time failure.
Alternatively, a small number of concurrent task overruns may be allowed in
order to accommodate cases where a task occasionally takes longer than
normal to complete.

The Execution Profiling Block
See the Block Reference section “MPC555 Execution Profiling via SCI1” on
page 4-39 or “MPC555 Execution Profiling via CAN A” on page 4-36.

Execution Profiling

2-37

Real Time Workshop Options for Execution Profiling
You can see these options on the ET MPC555 real-time options (2) tab of the
Real-Time-Workshop tab in the Configuration Parameters dialog.

Execution profiling

If this option is checked then the generated code for the model will be
“instrumented” with function calls at the beginning and end of each task or ISR
to be profiled. These function calls read a timer (on MPC555 it is the
decrementer timer) and log this reading along with a task identifier.

When code for the model is generated, these functions will update data on the
worst-case turnaround time for each timer-based task as well as the worst-case
number of concurrent task overruns, whenever a previous worst case value is
exceeded. Additionally, when a trigger is provided, data will be logged over a
period of time to record all task start and task finish times. The trigger signal
can be supplied, for example, by the execution profiling blocks. See “MPC555
Execution Profiling via SCI1” on page 4-39 and “MPC555 Execution Profiling
via CAN A” on page 4-36.

Number of data points

When a snapshot of task and ISR activity is logged this data is stored in
memory that is statically allocated at build time. Each data point requires 8
bytes on the MPC555. The larger the number of data points to be stored, the
more RAM that must be reserved for this purpose. At the end of a logging run,
the data must be uploaded to the host computer for analysis; this is typically
achieved by using the execution profiling blocks.

2 Generating Stand-Alone Real-Time Applications

2-38

Note For MPC555, it is necessary to build the driver libraries with flag
DPROFILING_ENABLED=1. If this is not done, then no profiling information
will be recorded for CAN or TPU ISRs.

Real Time Workshop Overrun Options
These Real-Time Workshop options configure the allowable number of task
overruns. You can see these options on the ET MPC555 real-time options (2)
tab of the Real-Time-Workshop pane in the Model Explorer.

You can use the options Maximum number of concurrent base-rate
overruns and Maximum number of concurrent sub-rate overruns to
configure the behavior of the scheduler when any of the timer based tasks do
not complete within their allowed sample time. It is useful to allow task
overruns in the case where a task may occasionally take longer than usual to
complete (e.g. if extra processing is required when a special event occurs); if the
task overrun is only occasional then it is possible for the scheduler to 'catch up'
after the extra processing has been completed.

If the maximum number of concurrent overruns for any task is exceeded, this
is deemed to be a failure and the real-time application is stopped. This in turn
will result in a watchdog timer timeout (provided the watchdog timer is
enabled) and the processor will be reset.

As an example, if the base rate is 1 ms and the maximum number of concurrent
base-rate overruns is set to 5 then it is possible for the base rate task to run for
almost 6 ms before failure occurs. Once the overrun has occurred, it is
necessary for subsequent executions of the base rate to complete in less than 1
ms in order that the lost time is recovered.

Execution Profiling

2-39

The occurrence of base-rate overruns does not affect the numerical behavior of
the algorithm (although reading/writing external devices will of course be
delayed).

If sub-rate overruns are allowed then the transfer of data between different
rates (via rate-transition blocks) in the model may be affected; this causes the
numerical behavior in real-time to differ from the behavior in simulation. To
see an illustration of this effect try running the demo model
mpc555rt_multitasking. To disallow sub-rate overruns and ensure that this
effect does not occur, you should set Maximum number of concurrent
sub-rate overruns to zero.

2 Generating Stand-Alone Real-Time Applications

2-40

Summary of the Real-Time Target
The following sections summarize the features of the Real-Time Target:

• “Code Generation Options” on page 2–40

• “Requirements and Restrictions” on page 2–42

Code Generation Options
The real-time target is an extension of the Real-Time Workshop Embedded
Coder embedded real-time (ERT) target configuration. The real-time target
inherits the code generation options of the ERT target, as well as the general
code generation options of the Real-Time Workshop. These options are
available via the Real-Time Workshop pane of the Configuration
Parameters dialog; they are documented in the Real-Time Workshop
documentation and the Real-Time Workshop Embedded Coder documentation.

Some code generation options of the ERT target are not relevant to the
real-time target, and are either unsupported, or restricted in their operation.
See “Requirements and Restrictions” on page 2-42 for details.

Note Do not attempt to build code in directories with spaces in the name.
This may cause the build to fail as we cannot guarantee that third party
toolchains will accept this.

Target-Specific Options
The real-time target has several target-specific code generation options. To
view or change the setting of these options, select the ET MPC555 real-time
options(1) tab of the Real-Time-Workshop tab in the Configuration
Parameters dialog. This picture shows the options at their default settings.

Summary of the Real-Time Target

2-41

• Optimize compiler for — Select speed, size, debug, or custom.

This option controls compiler optimization switches used during the build
process. The exact effect of the optimization switches depends on whether
you are using the Diab or CodeWarrior compiler. You can optimize for
performance by choosing the speed, size, or debug options, or define your
own (the custom option). You can edit these preferences here in the
Compiler optimization switches edit box if you want to apply changes to
the current model (Optimize compiler for: will change to custom). You can
also edit the defaults for these settings in the Target Preferences dialog if
you want to apply these changes to several models. See
“CompilerOptimizationSwitches” on page 1-18 for more information.

• Target memory model Select either FLASH or RAM.

If you select the FLASH option, files in a format suitable for downloading into
the MPC555 on-chip flash memory are written. If you select the RAM option,
files in a format suitable for downloading into RAM are generated.

2 Generating Stand-Alone Real-Time Applications

2-42

In both cases these two files are generated, with this naming convention:

- model_flash.s19 or model_ram.s19 — code only, for CAN download

- model_flash.elf or model_ram.elf — for BDM download, containing
code and optional debugging symbols if you choose a debug build in the
Optimize compiler for settings

• Build action

- None— code generation only.

- Launch_Download_Control_Panel —on completion of code generation the
Download Control Panel utility is opened.

- Run_Via_BDM—on completion of code generation download over BDM
connection automatically starts and on completion the code is run.

- Debug_Via_BDM—on completion of code generation download over BDM
connection automatically starts. When the download is complete the code
stops at the first line in debug mode, so you can step through the code.

• Use prebuilt RTW libraries

This check box option (selected by default) saves a considerable amount of
time during the build process, as the libraries do not need to be recompiled
every time. However, note this uses the defaults we have chosen for compiler
optimization switches. These defaults are designed for rapid prototyping
mode. If you are going to switch to production code development and want to
fine tune the settings, you should clear this option. Then the custom
optimization switches you set here will be applied to the library code as well
as the model code.

Requirements and Restrictions

MPC555 Resource Configuration Block Required
To generate code from a model using the Embedded Target for Motorola
MPC555 real-time target, an MPC555 Resource Configuration block must be
included in the model. The MPC555 Resource Configuration block is required
even for models that do not contain any MPC555 device driver blocks.

Summary of the Real-Time Target

2-43

Note When using device driver blocks from the Embedded Target for
Motorola MPC555 libraries in conjunction with the MPC555 Resource
Configuration block, do not disable or break library links on the driver blocks.
If library links are disabled or broken, the MPC555 Resource Configuration
block will operate incorrectly. See “MPC555 Resource Configuration” on
page 4-41 for further information.

Certain ERT code generation options are not supported by the real-time target.
If these options are selected, the real-time target either ignores the option or
issues an error message during the build process. Table 2-2 summarizes these
restricted options.

Table 2-2: Real-Time Target Restricted Code Generation Options

Option Restriction

MAT-file logging Ignored if selected; build process proceeds

Create Simulink
(S-function) block

Error if selected; build process terminates

External mode Error if selected; build process terminates

Generate an
example main
program

This option should not be selected for the real-time
target. The real-time target supplies a
target-specific main program, mpc555dk_main.c.
Ignored if selected; build proceeds with a warning.

Generate
reusable code

Error if selected; build process terminates

2 Generating Stand-Alone Real-Time Applications

2-44

3

PIL Cosimulation

This section includes the following topics:

Overview of PIL Cosimulation (p. 3-2) Basic concepts you will need to know to use cosimulation
effectively in your design process.

Tutorial 1: Building and Running a PIL
Cosimulation (p. 3-5)

A hands-on, step-by-step introduction to cosimulation
with the PIL target, using a plant/controller
demonstration model.

Tutorial 2: Modifying and Rebuilding
the Controller (p. 3-17)

This tutorial shows you how to use the PIL target to
make iterative changes to a controller subsystem.

Tutorial 3: Using the Demo Model In
Simulation (p. 3-21)

In addition to building code suitable for cosimulation, the
PIL target builds components you can use in closed-loop
and software-in-the-loop (SIL) simulations. This tutorial
shows you how to use these components.

PIL Target Summary (p. 3-22) Summary of code generation options of the PIL target;
restrictions and limitations of the PIL target.

Algorithm Export Target (p. 3-27) The Algorithm Export (AE) target generates only the code
that implements the algorithm of your model or
subsystem. This is useful for code analysis and
interfacing to hand-written or legacy code.

Code Analysis Reporting (p. 3-28) This section describes the extended HTML code
generation report.

Algorithm Export Target Summary
(p. 3-30)

Summary of code generation options and restrictions for
algorithm export.

3 PIL Cosimulation

3-2

Overview of PIL Cosimulation
The Embedded Target for Motorola MPC555 supports processor-in-the-loop
(PIL) cosimulation, a technique that is designed to help you evaluate how well
a candidate control system operates on the actual target processor selected for
the application.

The Embedded Target for Motorola MPC555 (processor-in-the-loop) target is
an extended version of the embedded real-time (ERT) target configuration,
designed specifically for PIL cosimulation. We will refer to this target as the
PIL target.

Why Use Cosimulation?
PIL cosimulation is particularly useful for simulating, testing and validating a
controller algorithm in a system comprising a plant and a controller. In classic
closed-loop simulation, Simulink and Stateflow model such a system as two
subsystems and the signals transmitted between them, as shown in this block
diagram.

Your starting point in developing a plant/controller system is to model the
system as two subsystems in closed-loop simulation. As your design progresses,
you can use Simulink external mode with standard Real-Time Workshop
targets (such as GRT or ERT) to help you model the control system separately
from the plant.

However, these simulation techniques do not help you to account for
restrictions and requirements imposed by the hardware. When you finally
reach the stage of deploying controller code on the target hardware, you may
need to make extensive adjustments to the controller system. Once these

Overview of PIL Cosimulation

3-3

adjustments are made, your deployed system may diverge significantly from
the original model. Such discrepancies can create difficulties if you need to
return to the original model and change it.

PIL cosimulation addresses these issues by providing an intermediate stage
between simulation and deployment. The term “cosimulation” reflects a
division of labor in which Simulink models the plant, while code generated
from the controller subsystem runs on the actual target hardware. In a PIL
cosimulation, the target processor participates fully in the simulation loop—
hence the term “processor-in-the-loop.”

How Cosimulation Works
This figure illustrates how the plant (P) and controller (C) components interact
in a PIL cosimulation
.

3 PIL Cosimulation

3-4

In a PIL cosimulation, Real-Time Workshop Embedded Coder generates
efficient code for the control system. This code runs (in simulated time) on a
target board using the intended microcontroller. The plant model remains in
Simulink without the use of code generation.

During PIL cosimulation, Simulink simulates the plant model for one sample
interval and exports the output signals (Yout of the plant) to the target board
via a communications link. When the target processor receives signals from the
plant model, it executes the controller code for one sample step. The controller
returns its output signals (Yout of the controller) computed during this step to
Simulink, via the same communications link. At this point one sample cycle of
the simulation is complete and the plant model proceeds to the next sample
interval. The process repeats and the simulation progresses.

To learn about PIL cosimulation though hands-on experience, see “Tutorial 1:
Building and Running a PIL Cosimulation” on page 3-5.

Tutorial 1: Building and Running a PIL Cosimulation

3-5

Tutorial 1: Building and Running a PIL Cosimulation
In this tutorial, you will use a subsystem in a Simulink model as a component
in simulations on your host computer, and also in a PIL cosimulation running
on your phyCORE-MPC555 board.

Before You Begin
Before working with this tutorial, you should read and follow the procedures in
“Setting Up and Verifying Your Installation” on page 1-13. Make sure that the
target preferences are set up appropriately for your development system
(CodeWarrior or Diab) as described in “Setting Target Preferences” on
page 1-14

Hardware Connections
The PIL target requires that you have a serial cable connection. You can also
use serial and CAN, or serial with a BDM connection.

Serial cable is required for host/target PIL communications whilst the model is
running, and downloads can occur over serial or CAN so the minimal
requirement is a single serial cable. BDM is not required but can be used if
desired; it is not recommended.

We assume that you have made the following connection, as described in the
“Interfacing the phyCORE-MPC555 to a Host PC” section of the
phyCORE-MPC555 Quickstart Instructions manual: Host PC serial (COM1)
port to the RS232-1 (P2) connector on the phyCORE-MPC555 board.

The Demo Model
We have provided a demo model for your use. The Fault-Tolerant Fuel Control
System model, shown in Figure 3-1, consists of a plant model with a controller
subsystem, the fuel rate controller subsystem.

3 PIL Cosimulation

3-6

Figure 3-1: Fault-Tolerant Fuel Control System Model

In the following sections, you will use the demo model and the PIL target to
generate the following:

• PIL code to run on the target board. The PIL target automatically invokes
the appropriate cross-development tools to compile, link, and (optionally)
download and run a target executable.

• A library containing

- The original fuel rate controller subsystem block for use in simulation.

- An S-function wrapper block, generated by Real-Time Workshop
Embedded Coder, that implements the fuel rate controller subsystem
for use in software-in-the-loop (SIL) simulation.

- A subsystem block that implements the fuel rate controller
subsystem on the host side during cosimulation. This subsystem
communicates with generated PIL code running on the target board.

- A master configurable subsystem block that represents the above three
components. You will plug this block into a plant model and select each of
the three components in turn for use in a simulation.

Tutorial 1: Building and Running a PIL Cosimulation

3-7

This figure shows a library generated by the PIL target.

3 PIL Cosimulation

3-8

Once you start the build process, there is almost no manual intervention
required to build all these components.

After building the components, you will use them in normal simulation, SIL
simulation, and PIL cosimulation. You will monitor the results of each
simulation via the Scope blocks in the model.

Setting Up the Model
In this section you will make a local copy of the demo model and configure the
model as required by this exercise:

1 Open the demo model by clicking the link or typing at the command line:

mpc555_fuelsys

Alternatively you can access the whole MPC555 demo suite by selecting
Start –> Demos and browsing under Simulink, or Start –> Simulink –>
Embedded Target for Motorola MPC555 –> Demos. The model is located
in the directory
matlabroot/toolbox/rtw/targets/mpc555dk/mpc555demos.

The path matlabroot should be the location where MATLAB is installed.

2 Save a copy of the demo model, mpc555_fuelsys.mdl to your working
directory.

Next, check that the model is correctly configured for use with the Embedded
Target for Motorola MPC555.

3 Click on the Fuel Rate Controller subsystem, then choose Configuration
Parameters from the Simulation menu. The Configuration Parameters
dialog opens.

4 Select the Real-Time Workshop tab.

Tutorial 1: Building and Running a PIL Cosimulation

3-9

5 Observe the RTW system target file setting on the General tab. The
target configuration should be as shown in this figure.

6 To see how to change target configuration settings, click the Browse button
to open the System Target File Browser, and observe the available
Embedded Target for Motorola MPC555 targets — algorithm export,
processor-in-the-loop, and real-time target. Leave the selected target at
mpc555pil.tlc. Click Cancel to close the Browser and return to the
Real-Time Workshop pane.

7 Select the Interface tab. Make sure that the options are set as shown in the
following figure. Note that the Create Simulink (S-Function) block option
is selected. This is required to generate a Real-Time Workshop Embedded
Coder S-function wrapper block.

3 PIL Cosimulation

3-10

.

8 Select the ET MPC555 (processor-in-the-loop) options tab.

9 Select Launch_Download_Control_Panel from the Build action drop-down
menu. This option automatically invokes the appropriate
downloading/debugging utility for your development environment, as
specified in your target preferences.

10 Click Apply if you have changed any parameters. Then close the
Configuration Parameters dialog box. If needed, save the model to
preserve any changes you have made.

Tutorial 1: Building and Running a PIL Cosimulation

3-11

Building PIL and Simulation Components
In this section, you will build a library of simulation, SIL, and PIL components
from the fuel rate controller subsystem:

1 Right-click on the fuel rate controller subsystem. A context menu
appears. Select Build Subsystem from the Real-Time Workshop submenu
of the context menu.

2 The Build code for Subsystem window opens. This window displays
information about each variable (or data object) that is referenced as a block
parameter in the subsystem. The window lets you inline or set the storage
class of individual parameters. We will not be concerned with these features
in this exercise. Click the Build button to continue the code generation and
build process.

3 The build process displays status messages in the MATLAB command
window. Intermediate Simulink windows are displayed as the build process
creates various components.

4 When the code generation process completes, the PIL target automates the
process of compiling, downloading, and executing the generated PIL code

3 PIL Cosimulation

3-12

that is to run on the target hardware. To accomplish this, the PIL target
launches your cross-development system (Diab or CodeWarrior), compiles
and makes the executable, and invokes the Download Control Panel to
download the code to the target. Click Start Download in the Download
Control Panel to complete the process.

5 At this point, the generated program is running on the target hardware and
waiting for communication to be established with Simulink on the host PC.

6 The build process has created and opened a library named fuel_lib, as
shown in this figure.

Tutorial 1: Building and Running a PIL Cosimulation

3-13

3 PIL Cosimulation

3-14

The library contains

• A copy of the original fuel rate controller subsystem.

• A Real-Time Workshop Embedded Coder generated S-function, labeled fuel
rate controller (SIL).

• A subsystem block that communicates with generated PIL code running on
the target board during cosimulation, labeled fuel rate controller (PIL).

• A master configurable subsystem block referencing the other three blocks.
The default block choice for this subsystem is the original fuel rate
controller subsystem.

The configurable subsystem, when plugged into the model, lets you choose
which of the three library components will perform the controller functions in
the model. We will use the configurable subsystem in the following sections.

The library window also contains the following controls:

• A Help button that displays PIL target documentation in the MATLAB Help
browser.

• A button that lets you replace the original (generating) subsystem in the
model with the generated configurable subsystem.

• A button that lets you do the inverse, i.e., remove the configurable subsystem
from the model from the original model and replace it with the original
(generating) subsystem from the library.

The library window documents the name of the original model/subsystem from
which the library was generated,

Using the Demo Model In a PIL Cosimulation
In this section, we will plug the configurable subsystem into the demo model,
select the PIL component, and use it in a PIL cosimulation:

1 Click on the fuel_lib library window to activate it. Double-click on the
button labeled Replace the original subsystem in the model with the
configurable subsystem from this library.

2 The mpc555pil_fuelsys model window is now the active window. The
original fuel rate controller subsystem has been deleted from the model.
It has been replaced by the configurable subsystem from the fuel_lib

Tutorial 1: Building and Running a PIL Cosimulation

3-15

library. The configurable subsystem is automatically connected to the same
signals that the original fuel rate controller subsystem was connected
to.

Note It is important to be aware that the insertion of the configurable
subsystem into the containing model establishes a link between the model,
mpc555pil_fuelsys, and the library, fuel_lib. The library has information
about the model and subsystem from which it was generated. The model, in
turn, has information about the library from which the configurable
subsystem comes. This linkage is based on the names of the library and the
model, and will be broken if either is renamed. To avoid errors, treat the model
and library as a single unit, and do not rename either.

3 Save the model.

4 Right-click on the configurable subsystem in the model. A context menu
appears. Select the Block choice menu item and observe the block choice
submenu. This figure shows the default block choice selection.

5 From the Block choice submenu of the context menu, select fuel rate
controller (PIL).

6 Open the model’s two Scope blocks, if they are not already opened.

7 Make sure that Simulink is in Normal mode.

8 You are now ready to run the cosimulation. To start the cosimulation, click
the Start simulation button in the Simulink toolbar.

The target system now starts executing the controller code. Observe that the
output signals computed on the target are displayed on the scopes. The
updating of the Scope blocks is slow, relative to a normal simulation,
because data is transmitted over the serial line on every model step.

3 PIL Cosimulation

3-16

9 When the simulation completes, the signals displayed on the scopes should
appear as shown in Figure 3-2.

Figure 3-2: Signals Displayed at End of Simulation or Cosimulation

10 When the cosimulation has completed, or has stopped or paused, the target
code enters a wait state until it receives a command to start (or resume) from
the host. Restart the cosimulation by clicking the Start simulation button
again. You can start, stop, restart, pause, or continue a cosimulation exactly
as you would a normal simulation. Try each of these operations a few times.

11 Stop the cosimulation (or let it complete) and activate your
cross-development system. Terminate the program on the target system,
and exit your cross-development system.

You can reload and run the target code created by the PIL target for your
cross-development system, and run another cosimulation by using the
Download Control Panel from the Start menu. Select the *.s19 file. In this
case it will be fuel_ram.s19.

See “Build Process Files and Directories” on page 3-24 for information on the
files and directories created by the build process.

Tutorial 2: Modifying and Rebuilding the Controller

3-17

Tutorial 2: Modifying and Rebuilding the Controller
In this section, we will continue to use the configurable subsystem we built in
“Tutorial 1: Building and Running a PIL Cosimulation” on page 3-5.

In this tutorial, we will make a simple change to the original fuel rate
controller subsystem in our generated library, fuel_lib. We will then
rebuild the library components, and run another cosimulation, observing the
behavior of our modified controller. All of these steps will be accomplished
within the same model/library pair.

Note Before you begin the procedure below, make sure that you have stopped
the target program and exited your cross-development system.

Modifying the Controller
In this section, we add an output signal and port to the controller subsystem.
The changes we make to the controller subsystem in this section are for
demonstration purposes; they do not add useful functionality to the model:

1 Activate the fuel_lib library, and double-click on the original fuel rate
controller subsystem.

2 Add a Sum block, a Constant block, and an outport to the fuel rate
controller subsystem. Configure them such that an offset of 0.5 is summed
with the fuel rate signal.

3 Route the Sum block output to the new outport, and label the outport fuel
+ offset. The fuel rate controller subsystem should now resemble this
block diagram.

3 PIL Cosimulation

3-18

4 Close the fuel rate controller subsystem. Observe that, in the library
window, the fuel rate controller subsystem now has two outputs, but the
SIL and PIL blocks in the library do not. These components will not be
updated until the library is rebuilt.

Note You do not need to remove the configurable subsystem from the model
to rebuild the code for the SIL and PIL components.

5 Activate the mpc555pil_fuelsys model. Right-click on the configurable
subsystem in the model. A context menu appears. From the Block choice
submenu of the context menu, select fuel rate controller. Observe that
the configurable subsystem reflects the change in the corresponding
component of the library, showing two outports.

6 Add a Scope block to the model and connect it to the new fuel + offset
outport of the configurable subsystem. Label the scope fuel with offset.

Tutorial 2: Modifying and Rebuilding the Controller

3-19

Rebuilding the Controller and Cosimulating
You are now ready to rebuild the PIL code and library components. This time,
however, you will build from the configurable subsystem, which must be linked
back to the fuel rate controller subsystem in the library. Before continuing,
right-click on the configurable subsystem and make sure that, in the Block
choice submenu of the context menu, fuel rate controller is selected. Do
not select fuel rate controller (SIL) or fuel rate controller (PIL).

To rebuild the PIL code and library components:

1 Right-click on the configurable subsystem, and select Build Subsystem
from the Real-Time Workshop submenu of the context menu.

2 The build process proceeds as described in the previous tutorial (see
“Building PIL and Simulation Components” on page 3-11 if necessary). At
the end of the build process, the fuel_lib library is again activated. Observe
that the rebuilt SIL and PIL components now have two outports, like the
original subsystem from which they were generated, as shown in this figure.

3 The PIL code has been downloaded to the target; you can now cosimulate
again with the rebuilt PIL code. As before, right-click on the configurable
subsystem in the model, and select fuel rate controller (PIL) from the
Block choice submenu of the context menu.

4 Open all the model’s Scope blocks, if they are not already opened.

5 Make sure that Simulink is in Normal mode.

3 PIL Cosimulation

3-20

6 Click the Start simulation button in the Simulink toolbar.

Observe the signals displayed on the scopes. The fuel with offset scope
and the Metered Fuel scope should display signals that are identical except
for their offsets. Otherwise, all signals should be identical to the signals
generated by the previous cosimulation.

7 Clean up by terminating the program on the target system, and exiting your
cross-development system. Save the model if desired.

In the next section, you will use the other components of the fuel_lib library
in simulations.

Tutorial 3: Using the Demo Model In Simulation

3-21

Tutorial 3: Using the Demo Model In Simulation
In this section, we will continue to use the configurable subsystem in the demo
model, using it first in a normal closed-loop simulation and then in a SIL
simulation.

Closed-Loop Simulation

1 Right-click on the configurable subsystem and select fuel rate controller
from the Block choice submenu of the context menu. This selects the
controller subsystem that was used in the original model.

2 Open the Scope blocks and start the simulation. When the simulation
completes (simulation time is set to 8 seconds), the signals displayed on the
scopes should appear identical to those displayed during the previous
cosimulation (see Figure 3-2 on page 3-16).

SIL Simulation

1 Right-click on the configurable subsystem and select fuel rate controller
(SIL) from the Block choice submenu of the context menu.

Selecting this option directs Simulink to call a generated wrapper S-function
that implements the controller algorithm in highly efficient Real-Time
Workshop Embedded Coder generated code. You can now run a SIL
simulation.

2 Start the simulation. You will notice that the simulation completes much
more quickly, due to the efficiency of the generated code. Also, observe that
the generated code displays results, on the scopes, that are identical to the
previous simulation and cosimulation (see Figure 3-2 on page 3-16).

3 PIL Cosimulation

3-22

PIL Target Summary
The following sections summarize the features of the PIL target:

• “Code Generation Options” on page 3-22

• “Build Process Files and Directories” on page 3-24

• “Restrictions” on page 3-25

Code Generation Options
The PIL target is an extension of the Real-Time Workshop Embedded Coder
embedded real-time (ERT) target configuration. The PIL target inherits the
code generation options of the ERT target, as well as the general code
generation options of Real-Time Workshop. These options are available via the
Category menu of the Real-Time Workshop pane of the Simulation
Parameters dialog box; they are documented in the Real-Time Workshop
documentation and the Real-Time Workshop Embedded Coder documentation.

Some code generation options of the ERT target are not relevant to the PIL
target, and are either unsupported, or restricted in their operation, by the PIL
target. See “Restrictions” on page 3-25 for details.

Note Do not attempt to build code in directories with spaces in the name.
This may cause the build to fail as we cannot guarantee that third-party
toolchains will accept this.

Target-Specific Options
The PIL target has two target-specific code generation options: Build action
and Use prebuilt (static) RTW libraries. To view or change the setting of
these options, select the ET MPC555 (processor-in-the-loop) options tab on
the Real-Time Workshop pane of the Model Explorer window.

PIL Target Summary

3-23

• The Build action menu has two options that control what action the PIL
target takes after completing the code generation process:

- Launch_Download_Control_Panel: When this option is selected, the PIL
target automatically invokes the Download Control Panel. When you
click Start Download the PIL target downloads the generated code to the
target board and begins execution of the code.

Before using this option, make sure that the target preferences (Compiler
and Debugger paths) are set correctly.

- None: When this option is selected, the PIL target does not take any action
after code generation completes. To download and run your application,
you must do so manually, using your development tools.

• Use prebuilt (static) RTW libraries

This check box option (selected by default) saves a considerable amount of
time during the build process, as the libraries do not need to be recompiled
every time.

Manual Download
Once a subsystem has been built using the PIL target, it is possible to use the
Download Control Panel to manually download the generated code to the
target without repeating the entire build process. To do this, use the following
procedure:

1 Select Start –> Simulink –> Embedded Target for Motorola MPC555 –>
Launch Download Control Panel.

2 Select the required *.s19 file, and click Start Download.

3 PIL Cosimulation

3-24

Build Process Files and Directories
The PIL target creates the following in your working directory:

• A build directory, containing generated source code, object files in their own
directory, and a makefile and other control files. The build directory also may
contain subdirectories used by Stateflow and by the HTML code generation
report generator (see “Code Analysis Reporting” on page 3-28).

The naming convention for the build directory is source_mpc555pil, where
source is the first word of the generating subsystem or model. For example,
the fuel rate controller subsystem used in the PIL tutorials generates
the build directory fuel_mpc555pil.

• The generated library, source_lib.mdl, and the.dll components that are
bound to the generated PIL and SIL blocks in the library. Note that if you
rebuild source_lib.mdl in the same working directory, a revision number is
appended to the source string. For example, building from the fuel rate
controller subsystem used in the PIL tutorials generates fuel_lib.mdl,
fuel1_lib.mdl, fuel2_lib.mdl... fueln_lib.mdl.

• Executable PIL code in a format suitable for downloading to the target and
execution by your development system (Diab or Metrowerks).

• Project files, debugging symbol files, link maps, and other files specific to
your development system (Diab and Metrowerks).

If you do not select the Launch_Download_Control_Panel option when you
generate code (or if you want to rerun PIL code after it is built), you can use the
Download Control Panel to manually download and run the generated
executable. To do this, see “Manual Download” on page 3-23.

PIL Target Summary

3-25

Restrictions
Please note the following restrictions on the use of the PIL target:

• The PIL target does not support code generation from device driver blocks
from the Embedded Target for Motorola MPC555 block libraries. Do not
include device driver blocks in your PIL models.

• In a plant/controller simulation where the controller is built via the PIL
target, the plant model can contain any Simulink blocks, including a
combination of continuous-time and discrete-time blocks. However, the
controller subsystem must not include any continuous-time blocks. This
component is used for code generation in the Embedded-C format of
Real-Time Workshop Embedded Coder; the Embedded-C format does not
support continuous blocks.

• If you change the cross-compiler you use with the PIL target (from Diab to
CodeWarrior or vice versa), you should rebuild your PIL models in a clean
directory, or delete all files from the models’ code generation directories. The
PIL build process expects to start with a clean directory, or a directory
created in the process of building with the same compiler. Leftover
components built by a different compiler cause errors.

• Certain ERT code generation options are not supported by the PIL target. If
these options are selected, the PIL target either ignores the option or issues
an error message during the build process. Table 3-1 summarizes these
restricted options.

Table 3-1: PIL Target Restricted Code Generation Options

Option Restriction

MAT-file logging Ignored if selected; build process
proceeds

Generate ASAP2 file Ignored if selected; build process
proceeds

External mode Error if selected; build process
terminates

3 PIL Cosimulation

3-26

Generate an example main
program

This option should not be selected for
the PIL target. The PIL target supplies
a target-specific main program,
mpc555dk_main.c.

Generate reusable code Error if selected; build process
terminates

Target floating-point math
environment

Error if ISO_C menu option is selected.
Use only the ANSI_C option (default).

Table 3-1: PIL Target Restricted Code Generation Options (Continued)

Option Restriction

Algorithm Export Target

3-27

Algorithm Export Target
The Embedded Target for Motorola MPC555 Algorithm Export (AE) target is
an aid to code analysis and interfacing. The target generates only the code that
implements the algorithm of your model or subsystem, without any overhead
for PIL host/target communications or other operations extraneous to the
model. Such purely algorithmic code is easier to interface to your hand-written
or legacy code than code generated by the PIL or RT targets.

Another application of the AE target is to use it to produce a code generation
report. Since only model code is included, you can more easily analyze the code
generated from your model.

The AE target supports both the CodeWarrior and Diab cross-compilers, as
specified in your target preferences (see “Setting Target Preferences” on
page 1-14).

To use the AE target,

3 Select Configuration Parameters from the Simulation menu. The
Configuration Parameters dialog opens.

4 Select the Real-Time Workshop tab.

5 On the General tab, click on the Browse button to open the System Target
File Browser. In the browser, select Embedded Target for Motorola
MPC555 (algorithm export) target. Click OK to close the browser and
return to the Real-Time Workshop pane.

6 Select the Templates tab and make sure Generate an example main
program is selected.

7 Follow the usual procedure for generating code from your model or
subsystem.

We recommend using the AE target in conjunction with the Embedded Target
for Motorola MPC555 HTML code generation report (see “Code Analysis
Reporting” on page 3-28). If you select the Generate HTML report option as
described in the next section, you can view a profiling report that includes
detailed itemization of RAM and ROM usage for all code and data sections, and
a complete memory map of the generated code. You can also easily examine the
generated code via hyperlinks in the code generation report.

3 PIL Cosimulation

3-28

Code Analysis Reporting
The Embedded Target for Motorola MPC555 supports an extended version of
the Real-Time Workshop Embedded Coder HTML code generation report.

The extended code generation report consists of several sections:

• The Generated Source Files section of the Contents pane contains a table
of source code files generated from your model. You can view the source code
in the MATLAB Help browser. Hyperlinks within the displayed source code
let you view the blocks or subsystems from which the code was generated.
Click on the hyperlinks to view the relevant blocks or subsystems in a
Simulink model window.

• The Summary section lists version and date information, TLC options used
in code generation, and Simulink model settings.

• The Optimizations section lists the optimizations used during the build, and
also those that are available. If you chose options that generated less than
optimal code, they are marked in red. This section can help you select options
that will better optimize your code.

• The report also includes information on other code generation options, code
dependencies, and links to relevant documentation.

• The code profile report section includes a detailed itemization of RAM and
ROM usage for all code and data sections, and a complete memory map of the
generated code.

To generate a code generation report and view the profiling report,

1 On the General tab of the Real-Time Workshop pane of the Model
Explorer, make sure that the Generate code only option is not selected.

The reason for this step is that the Embedded Target for Motorola MPC55
extended code generation report obtains information from MAP files that
are created by your cross-compiler during the build process. If the Generate
code only option is on, these files are not generated, which prevents the
generation of the code generation report.

Code Analysis Reporting

3-29

2 Select Generate HTML report, as shown in this picture.

3 Follow the usual procedure for generating code from your model or
subsystem.

4 Real-Time Workshop writes the code generation report file in the build
directory. The file is named model_codegen_rpt.html or
subsystem_codegen_rpt.html.

5 Real-Time Workshop automatically opens the MATLAB Help browser and
displays the code generation report.

6 To view the profiling report, click on the Code profile report link in the
Contents pane of the report.

Alternatively, you can view the code generation report in your Web browser.

3 PIL Cosimulation

3-30

Algorithm Export Target Summary
The following sections summarize the features of the Algorithm Export (AE)
target:

• “Code Generation Options” on page 3-22

• “Restrictions” on page 3-30

Code Generation Options
The AE target is an extension of the Real-Time Workshop Embedded Coder
embedded real-time (ERT) target configuration. The AE target inherits the
code generation options of the ERT target, as well as the general code
generation options of Real-Time Workshop. These options are available via the
General tab of the Real-Time Workshop tab of the Configuration
Parameters dialog; they are documented in the Real-Time Workshop
documentation and the Real-Time Workshop Embedded Coder documentation.

Some code generation options of the ERT target are not relevant to the AE
target, and are either unsupported, or restricted in their operation, by the AE
target. See “Restrictions” below for details.

Note Do not attempt to build code in directories with spaces in the name.
This may cause the build to fail as we cannot guarantee that third party
toolchains will accept this.

The only target-specific option for AE target is Use prebuilt (static) RTW
libraries. This check box option (selected by default) saves a considerable
amount of time during the build process, as the libraries do not need to be
recompiled every time.

Restrictions
Certain ERT code generation options are not supported by the AE target. If
these options are selected, the AE target either ignores the option or issues an
error message during the build process. Table 3-2 summarizes these restricted
options.

Algorithm Export Target Summary

3-31

You must not include driver blocks in your model for Algorithm Export. The AE
target is designed to generate only the code that implements the algorithm of
your model or subsystem, without any overhead for PIL host/target
communications or other operations extraneous to the model, so you should not
be including driver blocks.

Table 3-2: AE Target Restricted Code Generation Options

Option Restriction

MAT-file logging Ignored if selected; build process
proceeds

Create Simulink (S-function)
block

Error if selected; build process
terminates

Generate ASAP2 file Ignored if selected; build process
proceeds

External mode Error if selected; build process
terminates

3 PIL Cosimulation

3-32

4

Block Reference

This section contains the following topics:

The Embedded Target for Motorola
MPC555 Block Libraries (p. 4-2)

Overview of the block libraries provided by the Embedded
Target for Motorola MPC555.

Blocks Organized by Libraries (p. 4-4) Block summaries and links to the block reference
documentation, grouped by block library.

Blocks — Alphabetical List (p. 4-16) Block summaries and links to the block reference
documentation, in alphabetical order.

4 Block Reference

4-2

The Embedded Target for
Motorola MPC555 Block Libraries

The Embedded Target for Motorola MPC555 provides three block libraries:

• The Embedded Target for Motorola MPC555 library (mpc555drivers.mdl)
provides device driver blocks that let your applications access on-chip
resources. The I/O blocks support the following features of the MPC555:

- Pulse width modulation (PWM) generation or digital output via the
Modular Input/Output Subsystem (MIOS) PWM unit or the Time
Processor Unit 3 (TPU) modules

- Analog input via the Queued Analog-to-Digital Converter (QADC64)

- Digital input and output via the MIOS or TPU

- Digital input via the QADC

- Frequency and pulse width measurement via the MIOS Double Action
Submodule (MDASM)

- Driver blocks to support other functions of the TPU modules – Fast
Quadrature Decode, New Input Capture/Input Transition Counter, and
Programmable Time Accumulator

- Serial transmit and receive

- Transmission or reception of Controller Area Network (CAN) messages via
the MPC555 TouCAN modules

• The CAN Message Blocks library (canblks.mdl) provides device driver and
utility blocks that support the Controller Area Network (CAN) protocol. CAN
is an industry standard protocol used in automotive electronics and many
other embedded environments where dispersed components require sharing
of information. The CAN Message Blocks library includes blocks for
transmitting, receiving, decoding, and formatting CAN messages. The CAN
Message Blocks library also supports message specification via the
Vector-Informatik CANdb standard.

• The CAN Drivers (Vector) library (vector_candrivers.mdl) provides blocks
for configuring and connecting to Vector-Informatik CAN hardware and
drivers.

The following sections provide complete information on each block in the
Embedded Target for Motorola MPC555 block libraries, in a structured format.

The Embedded Target for Motorola MPC555 Block Libraries

4-3

Refer to these pages when you need details about a specific block. Click Help
on the Block Parameters dialog box for the block, or access the block reference
page through Help.

Using Block Reference Pages
Block reference pages are listed in alphabetical order by the block name. Each
entry contains the following information:

• Purpose—Describes why you use the block or function.

• Library—Identifies the block library where you find the block.

• Description—Describes what the block does.

• Dialog Box—Shows the block parameters dialog and describes the
parameters and options contained in the dialog. Each parameter or option
appears with the appropriate choices and effects.

• Examples—Optional section that provides demonstration models to
highlight block features.

In addition, block reference pages provide pictures of the Simulink model icon
for the blocks.

4 Block Reference

4-4

Blocks Organized by Libraries
The blocks in the Embedded Target for Motorola MPC555 libraries are
organized into sublibraries that support different functions. The tables below
reflect the organization of the following libraries:

• “MPC555 Driver Library” on page 4-5

- “CAN 2.0B Controller Module (TouCAN) Sublibrary” on page 4-6

- “Enhanced Queued Analog-To-Digital Converter Module-64 Sublibrary”
on page 4-7

- “Execution Profiling Sublibrary” on page 4-7

- “Interrupts Sublibrary” on page 4-7

- “Modular Input/Output System (MIOS1) Sublibrary” on page 4-8

- “Queued Analog-to-Digital Converter Module-64 Sublibrary” on page 4-8

- “Serial Communications Interface (SCI) Sublibrary” on page 4-9

- “Time Processor Unit (TPU3) Sublibrary” on page 4-9

• “CAN Message Blocks” on page 4-11

• “CAN Drivers (Vector)” on page 4-11

• MPC555 Help and Demos — Open this library to access the demo suite. You
can double-click the Help for Demos block to go directly to information and
instructions for all demos, or select Start –> Simulink –> Embedded Target
for Motorola® MPC555 –> Demos, or at the command line enter
demo simulink 'Embedded Target for Motorolafi MPC555'

Blocks Organized by Libraries

4-5

MPC555 Driver Library

Note To generate code from a model using the Embedded Target for Motorola
MPC555 real-time target, an MPC555 Resource Configuration block must be
included in the model. The MPC555 Resource Configuration block is required
even for models that do not contain any MPC555 device driver blocks.

Note When using device driver blocks from the Embedded Target for
Motorola MPC555 libraries in conjunction with the MPC555 Resource
Configuration block, do not disable or break library links on the driver blocks.
If library links are disabled or broken, the MPC555 Resource Configuration
block will operate incorrectly. See “MPC555 Resource Configuration” on
page 4-41 for further information.

Top Level Library

Block Name Purpose

MPC555 Resource Configuration Support driver configuration for
MPC555 and MIOS, QADC, and
TouCAN submodules.

Watchdog In event of application failure, time
out and reset processor.

4 Block Reference

4-6

For CAN message blocks see “CAN Message Blocks” on page 4-11.

CAN 2.0B Controller Module (TouCAN) Sublibrary

Block Name Purpose

CAN Calibration Protocol
(MPC555)

Implement the CAN Calibration
Protocol (CCP) standard.

TouCAN Error Count Count transmit and/or receive
errors detected on selected TouCAN
modules.

TouCAN Fault Confinement State Indicate the state of a TouCAN
module.

TouCAN Interrupt Generator Generate an interrupt subsystem
for CAN interrupt sources.

TouCAN Receive Receive CAN messages from a
TouCAN module on the MPC555.

TouCAN Soft Reset Reset a TouCAN module.

TouCAN Transmit Transmit a CAN message via a
TouCAN module on the MPC555.

TouCAN Warnings Flag excessively high transmit or
receive error counts on TouCAN
modules.

Blocks Organized by Libraries

4-7

Enhanced Queued Analog-To-Digital Converter Module-64 Sublibrary

Block Name Purpose

QADCE Analog In Input driver enables use of Queued
Analog-Digital Converter
(QADC64) in continuous scan mode
for the MPC565.

QADCE Digital In Input driver enables use of Queued
Analog-Digital Converter
(QADC64) pins as digital inputs for
the MPC565.

Execution Profiling Sublibrary

Block Name Purpose

MPC555 Execution Profiling via
SCI1

Provides a serial interface to the
execution profiling engine.

MPC555 Execution Profiling via
CAN A

Provides a CAN interface to the
execution profiling engine via CAN
channel A.

Interrupts Sublibrary

Block Name Purpose

Asynchronous Rate Transition Converts rate of input signal to
specified sample time whilst
disabling interrupts.

4 Block Reference

4-8

Modular Input/Output System (MIOS1) Sublibrary

Block Name Purpose

MIOS Digital In Input driver for MIOS 16-bit
Parallel Port I/O Submodule
(MPIOSM).

MIOS Digital Out Output driver for MIOS 16-bit
Parallel Port I/O Submodule
(MPIOSM).

MIOS Digital Out (MPWMSM) Digital output via the MIOS Pulse
Width Modulation Submodule
(MPWMSM).

MIOS Pulse Width Modulation Out Output driver for MIOS Pulse
Width Modulation Submodule
(MPWMSM).

MIOS Waveform Measurement Support pulse width and pulse
period measurement via MIOS
Double Action Submodule.

Queued Analog-to-Digital Converter Module-64 Sublibrary

Block Name Purpose

QADC Analog In Input driver enables use of Queued
Analog-Digital Converter
(QADC64) in continuous scan mode
for the MPC555.

QADC Digital In Input driver enables use of
QADC64 pins as digital inputs for
the MPC555.

Blocks Organized by Libraries

4-9

Time Processor Unit (TPU3) Sublibrary

Block Name Purpose

TPU3 Digital In Input driver for TPU3 channel.

TPU3 Digital Out Output driver for TPU3 channel.

TPU3 Fast Quadrature Decode Input driver for a pair of TPU3
channels for Fast Quadrature
Decode (FQD)

TPU3 New Input Capture/Input
Transition Counter

Input driver for TPU3 channel New
Input Capture/Input Transition
Counter (NITC)

TPU3 Programmable Time
Accumulator

Input driver for TPU3 channel
Programmable Time Accumulator
(PTA)

TPU3 Pulse Width Modulation Out Output driver for TPU3 channel
Pulse Width Modulation.

Serial Communications Interface (SCI) Sublibrary

Block Name Purpose

Serial Transmit Configure serial output.

Serial Receive Configures serial input.

4 Block Reference

4-10

Configuration Class Blocks
Each sublibrary of the Embedded Target for Motorola MPC555 library contains
a configuration class block that has an icon similar to the one shown in this
picture.

Configuration class blocks exist only to provide information to other blocks. Do
not copy these objects into a model under any circumstances.

Blocks Organized by Libraries

4-11

CAN Message Blocks and CAN Drivers Libraries

See the CAN Blockset Reference for the following blocks:

CAN Message Blocks

Block Name Purpose

CAN Message Packing Map Simulink signals to CAN
messages.

CAN Message Packing (CANdb) Pack Simulink double signals into
CAN messages.

CAN Message Filter Dispatch message processing based
on message ID.

CAN Message Unpacking Inspect and unpack the individual
fields in a CAN message.

CAN Message Unpacking (CANdb) Decompose a CAN frame into its
constituent signals.

CAN Drivers (Vector)

Block Name Purpose

Vector CAN Configuration Configure a CAN channel (either
hardware or virtual) for use with
Vector-Informatik drivers.

Vector CAN Receive Read CAN frames from a Vector
CAN channel.

Vector CAN Transmit Transmit CAN frames on a Vector
CAN channel.

4 Block Reference

4-12

Data Type Support and Scaling for
Device Driver Blocks
The following table summarizes the input and output data types supported by
the device driver blocks in the Embedded Target for Motorola MPC555 library,
and the scaling applied to block inputs and outputs.

I/O Data Types and Scaling for MPC555 Device Driver Blocks

Block Input Data
Type

Input
Scaling

Output Data
Type

Output
Scaling/
Units

MIOS Digital
In

 Boolean 0 or 1 only

MIOS Digital
Out

Any Simulink
supported data type

logic 1 if
input > 0,
logic 0 if
input <= 0

MIOS Digital
Out
(MPWMSM)

Any Simulink
supported data type

logic 1 if
input > 0,
logic 0 if
input <= 0

MIOS Pulse
Width
Modulation
Out

double or single 0 to 1

MIOS
Waveform
Measurement

double or single
(must be same as
input data type)

Seconds

QADC Analog
In

uint16 or int16
(defined by
Justification
parameter)

(defined by
Justificatio
n
parameter)

Blocks Organized by Libraries

4-13

QADC Digital
In

Boolean 0 or 1 only

TouCAN
Receive

CAN_MESSAGE_STANDA
RD
or
CAN_MESSAGE_EXTEND
ED

N/A

TouCAN
Transmit

CAN_MESSAGE_STANDA
RD or
CAN_MESSAGE_EXTEND
ED

N/A

TouCAN
Warnings

Boolean N/A

TouCAN Error
Count

uint8 N/A

TouCAN Fault
Confinement
State

uint16 N/A

TPU3 Digital
In

Boolean 0 or 1 only

TPU3 Digital
Out

Any Simulink
supported data type

Logic 1 if
input > 0,
logic 0 if
input <= 0

TPU3 Fast
Quadrature
Decode

Fast Mode input
Boolean

uint16 N/A

I/O Data Types and Scaling for MPC555 Device Driver Blocks (Continued)

Block Input Data
Type

Input
Scaling

Output Data
Type

Output
Scaling/
Units

4 Block Reference

4-14

TPU3 New
Input
Capture/Input
Transition
Counter

uint16 N/A

TPU3
Programmable
Time
Accumulator

Time Accumulation

uint32

Period Count

uint8

N/A

TPU3 Pulse
Width
Modulation
Out

Duty cycle input (top
if 2 inputs): double or
single

0 to 1

Pulse period register
input — uint16

Saturated
to be in the
range 0 to
32768

I/O Data Types and Scaling for MPC555 Device Driver Blocks (Continued)

Block Input Data
Type

Input
Scaling

Output Data
Type

Output
Scaling/
Units

Blocks Organized by Libraries

4-15

Serial
Transmit

Data: uint8 (vector or
scalar)

Byte number: uint32
(scalar)

N/A Number of bytes:
uint32

0-16 (for
SCI1); 0 or 1
(for SCI2)

Serial Receive Byte number: uint32

Reset: Boolean

N/A

0 or 1

Data: uint8

Actual byte number:
uint32

Framing and parity
error: Boolean

Overrun flag:
Boolean

N/A

N/A

0 or 1

0 or 1

I/O Data Types and Scaling for MPC555 Device Driver Blocks (Continued)

Block Input Data
Type

Input
Scaling

Output Data
Type

Output
Scaling/
Units

4

4-16

Blocks — Alphabetical List 4

This section contains function reference pages listed alphabetically.

Asynchronous Rate Transition

4-17

4Asynchronous Rate TransitionPurpose Convert rate of input signal to specified sample time while disabling interrupts

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/
Interrupts

Description The Asynchronous Rate Transition block is used when reading or writing
signals attached to an Asynchronous subsystem. An Asynchronous subsystem
is one which is driven by an interrupt function call trigger. The subsystem is
run in the context of an interrupt and not in the context of the model. The
Asynchronous Rate Transition block should be placed outside the
Asynchronous subsystem and attached to either input ports or output ports of
the Asynchronous subsystem.

TheAsynchronous Rate Transition block copies the signal from input to output
while disabling interrupts. This ensures that blocks outside the subsystem that
want access to the signal do not get interrupted while reading or writing a
signal and end up with corrupt data.

Dialog Box

Sample time
The sample time of the block.

CAN Calibration Protocol (MPC555)

4-18

4CAN Calibration Protocol (MPC555)Purpose Implement the CAN Calibration Protocol (CCP) standard

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/
CAN 2.0B Controller Module

Description The CAN Calibration Protocol (MPC555) block provides an implementation of
a subset of the CAN Calibration Protocol (CCP) Version 2.1. CCP is a protocol
for communicating between the target processor and the host machine over
CAN. In particular, a calibration tool (see “Compatibility with Calibration
Packages” on page 4-23) running on the host can communicate with the target,
allowing remote signal monitoring and parameter tuning.

This block processes Command Receive Object (CRO) messages and outputs
the resulting Data Transmission Object (DTO) and Data Acquisition (DAQ)
messages.

Note To use the CAN Calibration Protocol block, you need
Stateflow 5.0(Release 13) and Stateflow Coder

For more information on CCP, refer to ASAM Standards: ASAM MCD: MCD
1a on the Association for Standardization of Automation and Measuring
Systems (ASAM) Web site at http://www.asam.de.

You can see an example illustrating how to use the CAN Calibration Protocol
(MPC555) block in the mpc555rt_ccp demo.

Note this block is entirely CAN triggered, and so is only designed for the
Real-Time Target .(CAN is disabled during PIL and SIL cosimulation.)

Using the DAQ Output
The DAQ output is the output for any CCP DAQ lists that have been set up.
You can use the ASAP2 file generation feature of the RT target to

• Set up signals to be transmitted using CCP DAQ lists.

• Assign signals in your model to a CCP event channel automatically (see
“Generating ASAP2 Files” on page 2-30).

CAN Calibration Protocol (MPC555)

4-19

Once these signals are set up, event channels then periodically fire events that
trigger the transmission of DAQ data to the host. When this occurs, CAN
messages with the appropriate CCP/DAQ data appear on the DAQ output,
along with an associated function call trigger.

It is the responsibility of the calibration tool (see “Compatibility with
Calibration Packages” on page 4-23) to use CCP commands to assign an event
channel and data to the available DAQ lists, and to interpret the synchronous
response.

Using DAQ lists for signal monitoring has the following advantages over the
polling method:

• There is no need for the host to poll for the data. Network traffic is halved.

• The data is transmitted at the correct update rate for the signal. Therefore
there is no unnecessary network traffic generated.

• Data is guaranteed to be consistent. The transmission takes place after the
signals have been updated, so there is no risk of interruptions while
sampling the signal.

Note The Embedded Target for Motorola MPC555 does not currently support
event channel prescalers.

CAN Calibration Protocol (MPC555)

4-20

Dialog Box

CAN station address (16 bit integer)
The station address of the target. The station address is interpreted as a
uint16. It is used to distinguish between different targets. By assigning
unique station addresses to targets sharing the same CAN bus, it is
possible for a single host to communicate with multiple targets.

TouCAN module
Choose A or B.

CAN message identifier (CRO)
Specify the CAN message identifier for the incoming Command Receive
Object (CRO) message you want to process.

CAN Calibration Protocol (MPC555)

4-21

CAN message type (CRO)
The incoming message type. Select either Standard(11-bit identifier)
or Extended(29-bit identifier).

CAN message identifier (DTO/DAQ)
The message identifier is the CAN message ID used for Data Transmission
Object (DTO) and Data Acquisition (DAQ) message outputs. It is also used
for transmitting messages to the host during the software-induced CAN
download (soft boot). See “Extended Functionality” on page 4-23.

CAN message type (DTO/DAQ)
The message type to be transmitted by the DTO and DAQ outputs. Select
either Standard(11-bit identifier) or Extended(29-bit identifier).

Total number of Object Descriptor Tables (ODTs)
The default number of Object Descriptor Tables (ODTs) is 8. These ODTs
are shared equally between all available DAQ lists. You can choose a value
between 0 and 254, depending on how many signals you want to log
simultaneously. You must make sure you allocate at least 1 ODT per DAQ
list, or your build will fail. The calibration tool will give an error message
if there are too few ODTs for the number of signals you specify for
monitoring. Be aware that too many ODTs can make the sample time
overrun. If you choose more than the maximum number of ODTs (254), the
build will fail.

A single ODT uses 56 bytes of memory. Using all 254 ODTs would require
over 14 KB of memory, a large proportion of the available memory on the
target. To conserve memory on the target the default number is low,
allowing DAQ list signal monitoring with reduced memory overhead and
processing power.

As an example, if you have five different rates in a model, and you are using
three rates for DAQ, then this will create three DAQ lists and you must
make sure you have at least three ODTs. ODTs are shared equally among
DAQ lists, and therefore you will end up with one ODT per DAQ list. With
less than three ODTs you get zero ODTs per DAQ list and the behavior is
undefined.

Taking this example further, say you have three DAQ lists with one ODT
each, and start trying to monitor signals in a calibration tool. If you try to

CAN Calibration Protocol (MPC555)

4-22

assign too many signals to a particular DAQ list (that is, signals requiring
more space than seven bytes (one ODT) in this case), then the calibration
tool will report this as an error.

For more information on DAQ lists, see “Data Acquisition (DAQ) List
Configuration” on page 2-33.

CRO sample time
Sample time for incoming Command Receive Object (CRO) messages.

Supported CCP Commands
The following CCP commands are supported by the CAN Calibration Protocol
(MPC555) block:

• CONNECT
• DISCONNECT
• DNLOAD
• DNLOAD_6
• EXCHANGE_ID
• GET_CCP_VERSION
• GET_DAQ_SIZE
• GET_S_STATUS
• SET_DAQ_PTR
• SET_MTA
• SET_S_STATUS
• SHORT_UP
• START_STOP
• START_STOP_ALL
• TEST
• UPLOAD
• WRITE_DAQ

CAN Calibration Protocol (MPC555)

4-23

Compatibility with Calibration Packages
The above commands support

• Synchronous signal monitoring via calibration packages that use DAQ lists

• Asynchronous signal monitoring via calibration packages that poll the
target

• Asynchronous parameter tuning via CCP memory programming

This CCP implementation has been tested successfully with the
Vector-Informatik CANape calibration package running in both DAQ list and
polling mode, and with the Accurate Technologies Inc. Vision calibration
package running in DAQ list mode. (Note that Accurate Technologies Inc.
Vision does not support the polling mechanism for signal monitoring.)

Extended Functionality
The CAN Calibration Protocol (MPC555) block also supports the
PROGRAM_PREPARE command. This command is an extension of CCP that allows
the automatic download of new code into the target memory. This removes the
requirement for a manual reset of the processor. On receipt of the
PROGRAM_PREPARE command, the target will reboot and begin the CAN
download process. This lets you download new application code to RAM or flash
memory, or download new boot code to flash memory. See “Downloading Boot
or Application Code via CAN Without Manual CPU Reset” on page 2-26.

Note The CAN message identifiers of the CCP messages incoming to the
target (Command Receive Object (CRO) messages) and the messages outgoing
from the target (Data Transmission Object (DTO) or DAQ) are specified in the
block mask for the CAN Calibration Protocol (MPC555) block. These message
identifiers are used as the CAN identifiers for the download process after a
PROGRAM_PREPARE reboot. The type of CAN message used for this
PROGRAM_PREPARE download process is always Extended (29-bit
identifier).

MIOS Digital In

4-24

4MIOS Digital InPurpose Input driver for MIOS 16-bit Parallel Port I/O Submodule (MPIOSM)

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/
Modular Input/Output System (MIOS1)

Description The MIOS Digital In block reads the state of selected pins (bits) on the MIOS
16-bit Parallel Port I/O Submodule (MPIOSM) of the MPC555. The Bits field
specifies a vector of numbers in the range 0..15, corresponding to pins
MPIO32B0..MPIO32B15 on the MPIOSM.

The output of the block is a wide vector representing the logic state of the pins
referenced in the Bits field. When the signal on a given pin is a logical 1, the
block output element will be equal to 1; otherwise the block output element will
equal zero.

Refer to section 15.13, “MIOS 16-bit Parallel Port I/O Sub module (MPIOSM),”
in the MPC555 Users Manual for further information.

Note You are responsible for ensuring that pin assignments of MIOS Digital
In and MIOS Digital Out blocks in your model do not conflict. No error
checking is performed to detect conditions where the same pin is referenced by
both an input and an output block. If such a condition occurs, the behavior of
the system is undefined.

MIOS Digital In

4-25

Dialog Box

Bits
A vector of numbers in the range 0..15. Each number corresponds to a pin
(MPIO32B0..MPIO32B15) on the MPIOSM.

Sample time
Sample time of the block.

Enable pass through (show simulation input)
Driver block-based pass through is being deprecated in Release 14 and you
will see a warning if you select this option. This feature will be removed in
a future release. Please use the replacement mechanism as shown in the
demo model, mpc555_fuelsys_project.

MIOS Digital Out

4-26

4MIOS Digital OutPurpose Output driver for MIOS 16-bit Parallel Port I/O Submodule (MPIOSM)

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/
Modular Input/Output System (MIOS1)

Description The MIOS Digital Out block sets the state of selected pins (bits) on the MIOS
16-bit Parallel Port I/O Submodule (MPIOSM) of the MPC555. The Bits field
specifies a vector of numbers in the range 0..15, corresponding to pins
MPIO32B0..MPIO32B15 on the MPIOSM.

The input to the block is a wide vector with one signal element per pin. When
the input signal is greater than zero, a logical 1 is written to the corresponding
pin. When the input signal is less than or equal to zero, a logical zero is written
to the corresponding pin.

If you want to write to several digital output pins at the same sample rate,
using a single MIOS Digital Out block with a vector input signal will result in
more efficient code. However, if you want to update different output pins at
different sample rates, you must use a separate MIOS Digital Out block for
each rate.

Refer to section 15.13, “MIOS 16-bit Parallel Port I/O Sub module (MPIOSM),”
in the MPC555 Users Manual for further information.

Note You are responsible for ensuring that pin assignments of MIOS Digital
In and MIOS Digital Out blocks in your model do not conflict. No error
checking is performed to detect conditions where the same pin is referenced by
both an input and an output block. If such a condition occurs, the behavior of
the system is undefined.

MIOS Digital Out

4-27

Dialog Box

Bits
A vector of numbers in the range 0..15. Each number corresponds to a pin
(MPIO32B0..MPIO32B15) on the MPIOSM.

Initial output level
The value to be placed on the output pins at initialization. This ensures the
starting level is always known.

Sample time
The sample time of this block.

Enable pass through (show simulation input)
Driver block-based pass through is being deprecated in Release 14 and you
will see a warning if you select this option. This feature will be removed in
a future release. Please use the replacement mechanism as shown in the
demo model, mpc555_fuelsys_project.

MIOS Digital Out (MPWMSM)

4-28

4MIOS Digital Out (MPWMSM)Purpose Digital output via the MIOS Pulse Width Modulation Submodule (MPWMSM)

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/
Modular Input/Output System (MIOS1)

Description The MIOS Digital Out (MPWMSM) block is a device driver that lets you use
the MIOS Pulse Width Modulation Submodule (MPWMSM) in digital output
mode. In digital output mode, the Pulse Width Modulation (PWM) feature of
the MPWMSM is turned off. When the input signal is greater than zero, a
logical 1 is written to the output pin; otherwise a logical zero is written.

Refer to section 15.12, “MIOS Pulse Width Modulation Submodule
(MPWMSM),” in the MPC555 Users Manual for further information on the
parameters described below.

Dialog Box

MPWM submodule number
Select a PWM submodule for output. Note that modules 4, 5, 20 and 21 are
for the MPC56x (561-6) only. If you select one of these modules and
MPC555 is the processor selected in the Resource Configuration block,
then an error will be thrown on updating the model.

MIOS Digital Out (MPWMSM)

4-29

Initial output level
The value to be placed on the output pins at initialization. This ensures the
starting level is always known.

Sample time
Sample time of the block.

Invert output polarity
Switches the output level for logic one and zero.

Enable pass through (show simulation input)
Driver block-based pass through is being deprecated in Release 14 and you
will see a warning if you select this option. This feature will be removed in
a future release. Please use the replacement mechanism as shown in the
demo model, mpc555_fuelsys_project.

MIOS Pulse Width Modulation Out

4-30

4MIOS Pulse Width Modulation OutPurpose Output driver for MIOS Pulse Width Modulation Submodule (MPWMSM)

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/
Modular Input/Output System (MIOS1)

Description The MIOS Pulse Width Modulation Out block is used for Pulse Width
Modulation (PWM) output from the MIOS Pulse Width Modulation Submodule
(MPWMSM). A PWM signal is a rectangular waveform whose period is
constant but whose duty cycle can be varied, under control of a modulator
signal, between 0% and 100%.

The MIOS Pulse Width Modulation block input signal acts as the modulator,
controlling the duty cycle of the signal on the output pin. The input signal is
multiplied by the period register value, and saturates if outside 0-1. When the
input signal value is 0, the output signal’s duty cycle is 0%. When the input
signal value is 1, the output signal’s duty cycle is 100%.

There are two possible methods for calculating the period of the waveform. You
can either control the scaling registers directly, or enter the desired (ideal)
period and the mask will solve for the best values for the scaling registers.

Refer to section 15.12, “MIOS Pulse Width Modulation Submodule
(MPWMSM),” in the MPC555 Users Manual for further information on the
parameters described below.

MIOS Pulse Width Modulation Out

4-31

Dialog Box

MPWM submodule number
Select a PWM submodule for output. Note that modules 4, 5, 20 and 21 are
for the MPC56x (561-6) only. If you select one of these modules and
MPC555 is the processor selected in the Resource Configuration block,
then an error will be thrown on updating the model.

Edit period registers manually
When this option is selected, the Clock prescaler field of MPWM
Status/Control Register and Number of clock ticks per period edit
fields are activated. You can then set the PWM period by setting these
values.

MIOS Pulse Width Modulation Out

4-32

When this option is not selected, use the Ideal period (sec) field to set the
PWM period parameters.

Ideal period (sec)
Specifies the desired period of the pulse signal. The mask then solves for
the clock prescaler and the pulse period.

Initial duty cycle
Enter an initial value for the duty cycle (0 <= duty cycle <= 1). This ensures
the initial value is always known.

Clock prescaler field of MPWM Status/Control Register
Divides the counter clock to get the clock signal used to drive the PWM
output. Note that the counter clock itself is derived from the MPC555
system clock as configured by the MPC555 Resource Configuration block
(see “MPC555 Resource Configuration” on page 4-41).

Number of clock ticks per period
Determines the number of PWM counter ticks per pulse period. Valid
values are 1 - 65535.

Sample time
Sample time of the block.

Invert output polarity
Switches the output level for logic one and zero.

Activate transparent mode
Bypasses the register double buffers. When transparent mode is active, a
software write to the Next Pulse Width Register is immediately transferred
to the Pulse Width Register. When transparent mode is inactive, the
updated value only takes effect at the start of the next period.

Hold output when at debug break point (freeze enable)
Stops the PWM counters when a breakpoint is hit during debug mode, and
holds the current output values.

Enable pass through (show simulation input)
Driver block-based pass through is being deprecated in Release 14 and you
will see a warning if you select this option. This feature will be removed in
a future release. Please use the replacement mechanism as shown in the
demo model, mpc555_fuelsys_project.

MIOS Waveform Measurement

4-33

4MIOS Waveform MeasurementPurpose Support pulse width and pulse period measurement via MIOS Double Action
Submodule (MDASM)

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/
Modular Input/Output System (MIOS1)

Description Waveform measurement is a feature of the MIOS Double Action Submodule
(MDASM) on the MPC555. The MIOS Waveform Measurement block currently
implements the following features of the MDASM:

• Pulse width measurement: the MIOS Waveform Measurement block outputs
the time from the leading edge of a pulse to the trailing edge of the same
pulse.

• Pulse period measurement: the MIOS Waveform Measurement block outputs
the time from the leading edge of a pulse to the next leading edge of a pulse.

Note that the minimum and maximum measurable pulse periods and pulse
widths are dependent on the selected clock sources and their configurations.

You must configure the clock sources via the MPC555 Resource Configuration
object. There are only two clock sources (assigned via the Counter bus
parameter) assignable to the 10 MDASM modules. More than one MDASM can
be assigned to a single clock source.

Refer to section 15.11, “MIOS Double Action Submodule (MDASM) Registers”
in the MPC555 Users Manual for further information on the parameters
described below.

MIOS Waveform Measurement

4-34

Dialog Box

MDASM submodule number
Select one of the 10 MIOS Double Action Submodules (MDASM) in the
MPC555.

Measurement
Select the mode of operation of the block: either pulse width measurement
or pulse period measurement.

Counter bus
Select one of the two counters that can be used as sources to drive the
MDASM module.The counters must be configured via the MPC555
Resource Configuration object. See “MIOS1 Configuration Parameters” on
page 4-51.

Measurement range: [resolution, max] seconds
This read only field displays the measurement range of the pulse width or
pulse period. The example shown is from the MPC555 real-time I/O demo
model (mpc555rt_io).

MIOS Waveform Measurement

4-35

Sample time
The period at which Simulink reads the pulse width or period. The
measurements are performed in hardware so it is not necessary to set the
sample time to suit the expected period of the incoming signal.

Invert output polarity
Changes the sense of the leading edge of the pulse. When Invert output
polarity is selected, the leading edge is rising. Otherwise, the leading edge
is falling.

Hold output when at debug break point (freeze enable)
Stops the clocks of the MDASM module when a breakpoint is hit during
debug mode.

Enable pass through (show simulation input)
Driver block-based pass through is being deprecated in Release 14 and you
will see a warning if you select this option. This feature will be removed in
a future release. Please use the replacement mechanism as shown in the
demo model, mpc555_fuelsys_project.

MPC555 Execution Profiling via CAN A

4-36

4MPC555 Execution Profiling via CAN APurpose Provide a CAN interface to the execution profiling engine via CAN channel A

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/ Utilities

Description Provides a CAN interface to the execution profiling engine. On receipt of a start
command message, logging of execution profile data is commenced. On
completion of a logging run, the recorded data is automatically returned via
CAN. You must specify the message identifiers for the start command and the
returned data. These identifiers must be compatible with the values used by
the host-side part of the execution profiling utility. See also MATLAB
command profile_mpc555.

profile_mpc555(connection) collects and displays execution profiling data
from an MPC555 target microcontroller that is running a suitably configured
application generated by Embedded Target for Motorola MPC555. The
connection may be set to 'CAN' in order to collect data via a CAN connection
between the target and the host computer. To use the CAN connection, you
must have suitable CAN hardware installed on the host computer. This
function will test for availability of CanCardX 1 or CanAc2Pci1 and defaults to
a bit rate of 500k bits per second. If you need to use a different configuration,
you should make a copy of this file and change the configuration data as
required. The data collected is unpacked then displayed in a summary HTML
report and as MATLAB graphic.

 profdata = profile_mpc555(connection)

returns the execution profiling data in the format documented by
exprofile_unpack.

To configure a model for use with execution profiling, you must perform the
following steps:

1 Check the appropriate option in the Target Specific Options tab of the
Real-Time Workshop Options dialog.

2 Make sure the model includes an MPC555 Execution Profiling block that
provides an interface between the target-side profiling engine, and the
host-side computer from which this command is run.

For more information see“Execution Profiling” on page 2-35 which includes
links to instructions for the example demo mpc555_multitasking.mdl.

MPC555 Execution Profiling via CAN A

4-37

Dialog Box

Start command CAN message identifier
Set the identifier of the message to start logging execution profiling data.
You should use the default unless you have modified profile_mpc555. This
identifier must be compatible with the values used by the host-side part of
the execution profiling utility (profile_mpc555).

The utility profile_mpc555 provides a mechanism for initiating an
execution profiling run and for uploading the recorded data to the host
machine. To perform this procedure using a CAN connection between host
and target, profile_mpc555 first sends a CAN message that is a command
to start an execution profiling run. The CAN identifier for this message
must be specified as the same value on the target as on the host. The
host-side values are hard-coded in profile_mpc555. If you are using an
un-modified version of the host side utility, you should use the default
value for this CAN message identifier. These are visible to help you avoid
using the same identifier for other tasks.

MPC555 Execution Profiling via CAN A

4-38

Returned data CAN message identifier
Set the message identifier for the returned data. As with the message
identifier for the start command, the value specified here must be the same
as the hard-coded value in profile_mpc555.

Sample time
The sample time of the block.The faster the sample time of the block, the
faster data will be uploaded at the end of the execution profiling run. You
may want to run this block slower than the fastest rate in the system
because the execution profiling itself imposes some loading on the
processor. You can minimize this extra loading by not running it at the
fastest rate.

MPC555 Execution Profiling via SCI1

4-39

4MPC555 Execution Profiling via SCI1Purpose Provide a serial interface to the execution profiling engine

Library Embedded Target for Motorola MPC555/
MPC555 Driver Library/ Execution Profiling

Description Provides a CAN interface to the execution profiling engine. On receipt of a start
command message, logging of execution profile data is commenced. On
completion of a logging run, the recorded data is automatically returned via
serial. See also MATLAB command profile_c166.

profile_mpc555(connection) collects and displays execution profiling data
from an MPC555 target microcontroller that is running a suitably configured
application generated by Embedded Target for Motorola MPC555. The
connection may be set to 'serial' in order to collect data via a serial connection
between the target and the host computer.

The data collected is unpacked then displayed in a summary HTML report and
as MATLAB graphic.

 profdata = profile_mpc555(connection)

returns the execution profiling data in the format documented by
exprofile_unpack.

To configure a model for use with execution profiling, you must perform the
following steps:

1 Check the execution profiling option in the Target Specific Options tab of the
Real-Time Workshop Options dialog.

2 Make sure the model includes an MPC555 Execution Profiling block that
provides an interface between the target-side profiling engine, and the
host-side computer from which this command is run.

For more information see “Execution Profiling” on page 2-35 which includes
instructions for the example demo mpc555_multitasking.mdl.

MPC555 Execution Profiling via SCI1

4-40

Dialog Box

Sample time
The sample time of the block. The faster the sample time of the block, the faster
data will be uploaded at the end of the execution profiling run. You may want
to run this block slower than the fastest rate in the system because the
execution profiling itself imposes some loading on the processor. You can
minimize this extra loading by not running it at the fastest rate.

MPC555 Resource Configuration

4-41

4MPC555 Resource ConfigurationPurpose Support device configuration for MPC555 CPU and MIOS, QADC, and TouCAN
submodules

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library

Description The MPC555 Resource Configuration block differs in function and behavior
from conventional blocks. Therefore, we refer to this block as the MPC555
Resource Configuration object.

The MPC555 Resource Configuration object maintains configuration settings
that apply to the MPC555 CPU and its MIOS, QADC, and TouCAN
subsystems. Although the MPC555 Resource Configuration object resembles a
conventional block in appearance, it is not connected to other blocks via input
or output ports. This is because the purpose of the MPC555 Resource
Configuration object is to provide information to other blocks in the model.
MPC555 device driver blocks register their presence with the MPC555
Resource Configuration object when they are added to a model or subsystem;
they can then query the MPC555 Resource Configuration object for required
information.

To install a MPC555 Resource Configuration object in a model or subsystem,
open the top-level Embedded Target for Motorola MPC555 library and select
the MPC555 Resource Configuration icon. Then drag and drop it into your
model or subsystem, like a conventional block.

Having installed a MPC555 Resource Configuration object into your model or
subsystem, you can then select and edit configuration settings in the MPC555
Resource Configuration window. See “Using the MPC555 Resource
Configuration Window” on page 4-45 for further information.

Note Any model or subsystem using device driver blocks from the Embedded
Target for Motorola MPC555 library must contain an MPC555 Resource
Configuration object. You should place an MPC555 Resource Configuration
object at the top level system for which you are going to generate code. If your
whole model is going to run on the target processor, put the MPC555 Resource
Configuration object at the root level of the model. If you are going to generate
code from separate subsystems (to run specific subsystems on the target),
place an MPC555 Resource Configuration object at the top level of each
subsystem. You should not have more than one MPC555 Resource

MPC555 Resource Configuration

4-42

Configuration object in the same branch of the model hierarchy. Errors will
result if these conditions are not met.

Types of Configurations
A configuration is a collection of parameter values affecting the operation of a
group of device driver blocks in one of the Embedded Target for Motorola
MPC555 libraries, such as the MIOS1, QADC64 or TouCAN libraries. The
MPC555 Resource Configuration object currently supports the following types
of configurations:

• “System Configuration Parameters” on page 4-47: MPC555 clocks and other
CPU-related parameters.

• “QADC64 Configuration Parameters” on page 4-48: parameters related to
the Queued Analog-to-Digital Converter module (QADC).

• “QADC64E Configuration Parameters” on page 4-50: parameters related to
the QADC for the MPC565.

• “MIOS1 Configuration Parameters” on page 4-51: parameters related to the
Modular Input/Output System (MIOS).

• “TouCAN Configuration Parameters” on page 4-52: parameters related to
the CAN 2.0B Controller Module (TouCAN).

• “Time Processor Unit (TPU3) Configuration Parameters” on page 4-55TPU3
Configuration: parameters related to the Time Processor Unit module.

• “Serial Communications Interface (SCI) Configuration Parameters” on
page 4-56: parameters related to the Serial Communications Interface.

Active and Inactive Configurations
An active configuration is a configuration associated with blocks of the model
or subsystem in which the MPC555 Resource Configuration object is installed.
There is always an active MPC555 configuration. For any other configuration
type (e.g., QADC, MIOS, or TouCAN), there is at most one active configuration.

MPC555 Resource Configuration

4-43

Consider this model, which contains a MPC555 Resource Configuration object
but no MPC555 device driver blocks.

This model has only one active configuration, for the MPC555 itself, as shown
in the MPC555 Resource Configuration window.

When a device driver block is added to the model, an appropriate configuration
is created and activated. The following figure shows an MIOS Digital Out block
added to the model.

MPC555 Resource Configuration

4-44

The addition of the MIOS Digital Out block causes an MIOS configuration to
be added to the list of active configurations, as shown in this figure.

A configuration remains active until all blocks associated with it are removed
from the model or subsystem. At that point, the configuration is in an inactive
state. Inactive configurations are not shown in the MPC555 Resource
Configuration window. You can reactivate a configuration by simply adding an
appropriate block into the model.

Note When using device driver blocks from the Embedded Target for
Motorola MPC555 libraries in conjunction with the MPC555 Resource
Configuration block, do not disable or break library links on the driver blocks.
If library links are disabled or broken, the MPC555 Resource Configuration
block will operate incorrectly.

MPC555 Resource Configuration

4-45

Using the MPC555 Resource Configuration Window
To open the MPC555 Resource Configuration window, install a MPC555
Resource Configuration object in your model or subsystem, and double-click on
the MPC555 Resource Configuration icon. The MPC555 Resource
Configuration window then opens.

MPC555 Resource Configuration Window

This figure shows the MPC555 Resource Configuration window for a model
that has active configurations for MPC555, MIOS1, QADC, and TouCAN.

The MPC555 Resource Configuration window consists of the following
elements:

• Active Configurations panel: This panel displays a list of currently active
configurations. To edit a configuration, click on its entry in the list. The
parameters for the selected configuration then appear in the System
configuration panel.

To link back to the library associated with an active configuration, right-click
on its entry in the list. From the pop-up menu that appears, select Go to
library.

To see documentation associated with an active configuration, right-click on
its entry in the list. From the popup menu that appears, select Help.

MPC555 Resource Configuration

4-46

• System configuration panel: This panel lets you edit the parameters of the
selected configuration. The parameters of each configuration type are
detailed in “MPC555 Resource Configuration Window Parameters” on
page 4-46.

Note There is no Apply or Undo functionality in the System configuration
panel. All parameter changes are applied immediately.

• Status panel: The Status panel displays error messages that may arise if
resource allocation conflicts are detected in the configuration.

• Validate Configuration button: After you edit a configuration, you should
always click the Validate Configuration button to check for resource
allocation conflicts. For example, if both TouCAN modules A and B are
assigned to interrupt level IRQ 1, the Validate Configuration process will
detect the conflict and display a warning in the Status panel.

Note that the Validate Configuration button does not validate the entire
model; it only checks for resource allocation conflicts related to the selected
configuration. To detect problems related to the model as a whole, select
Update diagram (Ctrl+D) from the Simulink Edit menu.

• Close button: Dismisses the window.

MPC555
Resource
Configuration
Window
Parameters

The sections below describe the parameters for each type of configuration in
the MPC555 Resource Configuration window. The default parameter settings
are optimal for most purposes. If you want to change the settings, we suggest
you read the sections of the MPC555 Users Manual referenced below. You can
find this document at the URL http://e-www.motorola.com.

MPC555 Resource Configuration

4-47

System Configuration Parameters

RT_ONESTEP_IRQ_LEVEL
The rt_OneStep function is the basic execution driver of all programs
generated by the Embedded Target for Motorola MPC555. rt_OneStep is
installed as a timer interrupt service routine; it sequences calls to the
model_step function. The RT_ONESTEP_IRQ_LEVEL parameter lets you
associate rt_OneStep with any of the available IRQ levels (0..7). Do not
select Interrupts Disabled, or the model will not work.

See the “Data Structures and Program Execution” section in the Real-Time
Workshop Embedded Coder documentation for a detailed description of the
rt_OneStep function.

System Clock Parameters
The other parameters in the MPC555 group alter the speed of three of the
main clocks in the MPC555. Note we only support 4MHz or 20 MHz clock
speeds. Refer to section 8, “Clocks and Power Control,” in the MPC555
Users Manual for information on these settings.

MPC555 Resource Configuration

4-48

QADC64 Configuration Parameters

The Queued Analog-To-Digital Converter Module 64 (QADC64) Configuration
parameters configure the QADC64 operational mode and supports the blocks
in the QADC sublibrary.

The QADC64 performs 10 bit analog to digital conversion on an input signal.
Currently the blocks in this library support only the continuous scan mode of
operation. In continuous scan mode, the QADC64 is set to run, and then
continuously acquires data into its result buffer. Input is double buffered, so
the model can read the result buffer at any time to get the latest available
signal data.

The MPC555 has two QADC modules, QADC_A and QADC_B. You can
program these individually. By default each QADC module has 16 input
channels. By attaching an external multiplexer to three of the analog input
pins, you can increase the number of possible channels to 41. These pins
become outputs from the processor and can act as inputs to an analog
multiplexer. The Multiplex Mode parameter determines whether the
QADC64 operates in internally or externally multiplexed mode.

Refer to section 13, “Queued Analog-to-Digital Converter Module-64,” in the
MPC555 Users Manual for detailed information about the QADC64.

MPC555 Resource Configuration

4-49

In general, you should not need to change any of the settings of the parameters
described below from their defaults. The other parameters are advanced
settings. Refer to section 13, “Queued Analog-to-Digital Converter Module-64,”
in the MPC555 Users Manual for information on these settings.

Multiplex Mode
Configures the QADC64 for internally or externally multiplexed mode by
setting the MUX bit. The MUX bit determines the interpretation of the
channel numbers and forces the MA[2:0] pins to be outputs. Valid settings
are

• 0 = Internally multiplexed : 16 possible channels
• 1 = Externally multiplexed : 41 possible channels

Prescaler Clock High Time
Prescaler clock high (PSH) time. The default is 7. The PSH field selects the
QCLK high time in the prescaler. PSH value plus 1 represents the high
time in IMB clocks.

Prescaler Clock Low Time
Prescaler clock low (PSL) time. The default is 7. The PSL field selects the
QCLK low time in the prescaler. PSL value plus 1 represents the low time
in IMB clocks.

MPC555 Resource Configuration

4-50

QADC64E Configuration Parameters

The Enhanced QADC functions are for MPC56x processors – you will see an
error message if you try to configure these for an MPC555. Use QADC blocks
for an MPC555; for an MPC56x set your target processor accordingly in the
Target Preferences and then you can use the QADCE blocks.

The Enhanced Queued Analog-To-Digital Converter Module 64 (QADC64E)
Configuration parameters configure the QADC64E operational mode and
supports the blocks in the Enhanced QADC sublibrary.

Multiplex Mode
Configures the QADC64 for internally or externally multiplexed mode by
setting the MUX bit. The MUX bit determines the interpretation of the
channel numbers and forces the MA[2:0] pins to be outputs. Valid settings
are

• 0 = Internally multiplexed : 40 possible channels
• 1 = Externally multiplexed : 65 possible channels

QCLK_Desired_Frequency
Set the Q clock frequency you want here. The QCLK_Actual_Frequency field
displays the true value achieved. QCLK_Actual_Frequency and
QCLK_Prescalar are read only fields for information.

MPC555 Resource Configuration

4-51

MIOS1 Configuration Parameters

CounterClock
The MIOS counter clock is generated by the MIOS counter prescaler
submodule. The MIOS counter clock drives the other MIOS1 submodules.
The value shown for the counter clock is calculated automatically as the
system clock frequency divided by the prescaler value.

Freeze Enable
This allows all counters on the MIOS1 to be frozen when the processor is
stopped in debug mode. Note that this is in addition to the Freeze Enable
setting for individual submodules on the MIOS1. To allow the counters on
a particular submodule to be stopped, select Freeze enable here, and select
Hold output when at debug break point (freeze enable) in the block
parameters associated with the submodule (e.g., MIOS Pulse Width
Modulation block or MIOS Waveform Measurement block).

Modulus Counter 6 and 22
These two counters provide reference clocks to submodules such as the
MIOS Pulse Width Modulation Submodule and the MIOS Double Action
Submodule (Frequency / Period measurement) subsystems. If you change
the Clock select to anything other than MMCSM Clock Prescaler, the

MPC555 Resource Configuration

4-52

MIOS Pulse Width Modulation and MIOS Waveform Measurement blocks
will not work as expected. To change the clock frequency and hence the
available resolution of pulse width modulation and waveform
measurement, change the Clock Prescaler to a value between 0 and 255.

Refer to section 15.10, “MIOS Modulus Counter Submodule (MMCSM),” in
the MPC555 Users Manual for information on these settings.

TouCAN Configuration Parameters

The parameters listed below are the same for TouCAN modules A and B.
Consult Section 16 of the MPC555 User’s Manual before editing the TouCAN
configuration parameter defaults.

IRQ Level
The transmit queue for each TouCAN module requires a processor
interrupt to run. Select an interrupt level (0-31) that is not used by any
other device. Use the Validate Configuration button to make sure you do
not select an interrupt level that is already in use. Do not disable

MPC555 Resource Configuration

4-53

interrupts, this will stop the TouCAN Transmit block from working
correctly.

Mask Configuration Parameters
Global RX Mask

Buffers 0-13 use this mask. Setting a bit to 1 in the mask causes the
corresponding bits in the message to be masked out (i.e., ignored).

Mask RX 14
 Same as Global RX Mask, but the mask applies only to buffer 14.

Mask RX 15
 Same as Global RX Mask, but the mask applies only to buffer 15.

Mask Type
Specify whether the buffer masks are Standard or Extended frame IDs. If
you want to receive Extended Frames in your model, you should set the
Mask Type to Extended Message. The mask type option tells the compiler
how to map the bits specified in the mask options to the bits in the
hardware. The decision as to whether a message is a Standard or Extended
frame is defined on a per message buffer basis.

Timing Configuration Parameters
CAN Bit Rate

Enter the desired bit rate. The default bit rate is 500000.0.

Number of Quanta
 The number of TouCAN clock ticks per message bit.

Resynchronization Jump Width
The maximum number of clock ticks that the TouCAN device can
resynchronize over when it detects that it is losing message
synchronization.

 Sample Point
The point in the message where the TouCAN tries to sample the value of
the message bit.

MPC555 Resource Configuration

4-54

Transmission Configuration Parameters
Transmit Queue Length

Length (number of messages) of the transmit queue. The transmit queue
holds messages that are waiting to be transmitted. An increase in
performance can be achieved by reducing the queue length. However, if the
queue's length is too small it may become full, causing messages to be lost.

Transmit Shared Buffers
Choose either Single TouCAN Buffer or Three TouCAN Buffers. This
parameter is used in conjunction with all TouCAN Transmit blocks in the
model that are operating in Queued transmission with shared buffer
mode. If you select Single TouCAN Buffer, then all messages that are
queued will be transmitted via a single hardware buffer; in this case, it is
possible that a low priority message in the transmit buffer will block higher
priority messages that are in the queue. To avoid this problem, use the
option Three TouCAN Buffers. When three buffers are used, the driver
ensures that the message entered into arbitration to be transmitted via the
CAN bus is always the highest priority message available; furthermore in
this mode the TouCAN module is able to transmit messages continuously
by re-loading hardware buffers that become empty while another buffer is
active transmitting.

MPC555 Resource Configuration

4-55

Time Processor Unit (TPU3) Configuration Parameters

The TCR1 timebase is configurable for TPU Channels A, B and C. The
parameters under the TCR1 tree allow you full control to specify the clock
speed of the TCR1 timebase. Consult Section 17 of the MPC555 User’s Manual
before editing the TPU configuration parameter defaults. The parameters
listed below are the same for TPU modules A, B and C.

TPUMCR2_DIV2
TPUMCR2_DIV2 (the last setting under the tree) allows you to choose to
use a set of prescalers to divide the IMB clock down further (Use
Prescalers (0)), or to just divide the IMB clock by two (IMB Clock / 2
(1)). If you choose the divide by two option then none of the other settings
are applicable and are marked N/A. Note this is the last setting purely
because the parameters are laid out in alphabetical order.

Enhanced_Prescaler_Enable
Here you can choose whether you use the Standard Prescaler (set by
Standard_Prescaler_Divide) or the Enhanced Prescaler (set by
Enhanced_Prescaler_Divide) to derive the Prescaler Clock.

MPC555 Resource Configuration

4-56

Standard_Prescaler_Divide
If you choose to use the Standard_Prescaler_Divide then you can choose to
divide the IMB clock down by either 32 or 4.

Enhanced_Prescaler_Divide
If you choose to use the Enhanced_Prescaler_Divide, then you can choose
to divide the IMB clock down by either 2, 4, 6, 8, .. , 60, 62, 64.

TCR1P_Divide
Whichever type of prescaler you choose (standard or extended), there is a
further prescaler that is applied to the clock. TCR1P_Divide divides the
Prescaler Clock by 1, 2, 4, or 8. The resulting clock is the TCR1 timebase.

IRQ_Level
This enables TPU interrupts. The default is disabled. If your model
contains any TPU3 Programmable Time Accumulator blocks, you will need
to choose an interrupt level.

Serial Communications Interface (SCI) Configuration Parameters

MPC555 Resource Configuration

4-57

Bit_rate_achieved
This read-only field shows the achieved serial interface bit rate. In general
this value differs slightly from the requested bit rate, but is the closest
value that can be achieved by setting allowed values in the MPC555
registers SCC1R0 and SCC2R0 for QSMCM submodules SCI1 and SCI2
respectively.

Bit_rate_ideal
Enter the desired bit rate for serial communications in this field.
Appropriate register settings will be calculated automatically. You can
check the actual bit rate in the Bit_rate_achieved field.

Loopback_mode_enable
Select either Standard transmit/receive or Loopback mode enabled. The
loopback mode may be useful for test purposes where the serial interface is
required to receive data that it transmitted itself.

SCI_mode_control
Select the desired combination of word length and parity/no parity.

Parity_selection
If parity is enabled, you must select Odd parity or Even parity.

QADC Analog In

4-58

4QADC Analog InPurpose Input driver enables use of Queued Analog-Digital Converter (QADC64) in
continuous scan mode

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/
Queued Analog-To-Digital Converter Module-64

Description The QADC Analog In block sets the QADC64 into continuous scan mode. It
then samples the specified channels at the specified rate. In continuous scan
mode, the analog-to-digital converter is scanned as fast as possible, at a rate
much faster than the sample rate of the model. Using continuous scan mode
ensures that your application will obtain the latest signal value.

The MPC555 has two QADC modules, A and B. You can program these
individually. You can place only one instance of the QADC Analog In block per
module in your model or subsystem.

Dialog Box

QADC module
 Select module A or B.

QADC Analog In

4-59

Channels
 A vector of numbers representing channels to be scanned. See “Channel
Number Selection” below.

Justification
Converted data is read from the 10-bit wide QADC64 result word table into
a 16-bit word. Data from the result word table can be accessed in three
different formats. The Justification menu selects from the following
formats:

• Right-justified (unsigned): with zeros in the higher order unused bits.

• Left-justified (signed): with the most significant bit inverted to form a
sign bit, and zeros in the unused lower order bits. In this mode, zero is
treated as the half scale of the input range.

• Left-justified (unsigned): with zeros in the unused lower order bits.

Refer to section 13.13, in the “Queued Analog-to-Digital Converter
Module-64” section of the MPC555 Users Manual for further information.

 Sample time
 Block sample time; determines sample rate at which the port is monitored.

Enable pass through (show simulation input)
Driver block-based pass through is being deprecated in Release 14 and you
will see a warning if you select this option. This feature will be removed in
a future release. Please use the replacement mechanism as shown in the
demo model, mpc555_fuelsys_project.

Channel
Number
Selection

A channel number in the Channels vector selects the input channel number
corresponding to the analog input pin to be sampled and converted. The analog
input pin channel number assignments and the pin definitions vary, depending
on whether the QADC64 is operating in multiplexed or nonmultiplexed mode.
The queue scan mechanism makes no distinction between an internally or
externally multiplexed analog input.

The following two tables show the mapping between the channel numbers and
the hardware pins for the two scanning modes (multiplexed and
nonmultiplexed).

QADC Analog In

4-60

For example, in nonmultiplexed mode, to scan all 16 channels of the QADC64
you would specify the following vector in the Channels field:

[0 1 2 3 48 49 50 51 52 53 54 55 56 57 58 59]

Nonmultiplexed Scan Mode

Port Pin
Name

Analog Pin
Name

Other Functions Pin Type
(I/O)

Channel Number

PQB0
PQB1
PQB2
PQB3

A_AD0 / AN0
A_AD1 / AN1
A_AD2 / AN2
A_AD3 /AN3

-
-
-
-

I
I
I
I

0
1
2
3

PQB4
PQB5

A_AD4 / AN48
A_AD5 / AN49

-
-

I
I

48
49

PQB6
PQB7
PQA0
PQA1

A_AD6 / AN50
A_AD7 / AN51
A_AD8 / AN52
A_AD9 / AN53

-
-
-
-

I I
I
I/O
I/O

50
51
52
53

PQA2
PQA3
PQA4
PQA5

A_AD10 / AN54
A_AD11 / AN55
A_AD12 / AN56
A_AD13 / AN57

-
-
-
-

I/O
I/O
I/O
I/O

54
55
56
57

PQA6
PQA7

A_AD14 / AN58
A_AD15 / AN59

-
-

I/O
I/O

58
59

QADC Analog In

4-61

Note that PQA0, PQA1 and PQA2 (corresponding to channels 52-54) are used
as output pins (MA0, MA1, and MA2) to drive an external demultiplexer.

Multiplexed Scan Mode

Port Pin
Name

Analog Pin
Name

Other Functions Pin Type
(I/O)

Channel
Number

PQB0
PQB1
PQB2
PQB3

A_AD0 / ANw
A_AD1 / ANx
A_AD2 / ANy
A_AD3 / Anz

-
-
-
-

I
I
I
I

0-14 even
1-15 odd
16-30 even
17-31 odd

PQB4
PQB5
PQB6

A_AD4 / AN48
A_AD5 / AN49
A_AD6 / AN50

-
-
-

I
I
I

48
49
50

PQB7 A_AD7 / AN51 - I I 51

PQA3
PQA4
PQA5
PQA6

A_AD11 / AN55
A_AD12 / AN56
A_AD13 / AN57
A_AD14 / AN58

-
-
-
-

I/O
I/O
I/O
I/O

55
56
57
58

PQA7 A_AD15 / AN59 - I/O 59

QADC Digital In

4-62

4QADC Digital InPurpose Input driver enables use of Queued Analog-Digital Converter (QADC64) pins
as digital inputs

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/
Queued Analog-To-Digital Converter Module-64

Description The QADC Digital In block allows you to treat the QADC64 pins as digital
inputs. Each QADC64 module has two 8-bit ports, A and B. You can use any bit
on either port as a digital input.

Dialog Box

QADC module
 Select module A or B.

Port
 Select an 8 bit port (A or B) on the module.

QADC Digital In

4-63

Bits
 A vector of bits (numbered 0-7) to read. The vector should not be longer
than eight elements.

Sample time
 Block sample time; determines sample rate at which the port is monitored.

Enable pass through (show simulation input)
Driver block-based pass through is being deprecated in Release 14 and you
will see a warning if you select this option. This feature will be removed in
a future release. Please use the replacement mechanism as shown in the
demo model, mpc555_fuelsys_project.

Mapping Bits To Hardware Pins
Use this table to work out how the block ports and bits map to processor pins
on the MPC555.

Relationship of Port/Bit Parameters to Hardware Pins

Port Bit Hardware Pin

B 0 A_AD0 / PQB0

B 1 A_AD1 / PQB1

B 2 A_AD2 / PQB2

B 3 A_AD3 / PQB3

B 4 A_AD4 / PQB4

B 5 A_AD5 / PQB5

B 6 A_AD6 / PQB6

B 7 A_AD7 / PQB7

A 0 A_AD8 / PQA0

A 1 A_AD9 / PQA1

A 2 A_AD10 / PQA2

QADC Digital In

4-64

A 3 A_AD11 / PQA3

A 4 A_AD12 / PQA4

A 5 A_AD13 / PQA5

A 6 A_AD14 / PQA6

A 7 A_AD15 / PQA7

Relationship of Port/Bit Parameters to Hardware Pins (Continued)

Port Bit Hardware Pin

QADCE Analog In

4-65

4QADCE Analog InPurpose Input driver enables use of Queued Analog-Digital Converter (QADC64) in
continuous scan mode on an MPC565

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/
Enhanced Queued Analog-To-Digital Converter Module-64

Description The QADCE Analog In block sets the QADC64E into continuous scan mode. It
then samples the specified channels at the specified rate. In continuous scan
mode, the analog-to-digital converter is scanned as fast as possible, at a rate
much faster than the sample rate of the model. Using continuous scan mode
ensures that your application will obtain the latest signal value.

The MPC565 has two QADC64E modules, A and B. You can program these
individually. You can place only one instance of the QADC Analog In block per
module in your model or subsystem.

Dialog Box

QADC module
 Select module A or B.

QADCE Analog In

4-66

Channels
 A vector of numbers representing channels to be scanned. A channel
number in the Channels vector selects the input channel number
corresponding to the analog input pin to be sampled and converted.

The analog input pin channel number assignments and the pin definitions
vary, depending on whether the QADC64 is operating in multiplexed or
nonmultiplexed mode. The queue scan mechanism makes no distinction
between an internally or externally multiplexed analog input.

In nonmultiplexed mode, specify a vector of numbers from [44..59 64..87]
corresponding to pins AN44..AN59 and AN64..AN87.

See the table following for the mapping in multiplexed mode between the
channel numbers and the hardware pins.

Justification
Converted data is read from the 10-bit wide QADC64 result word table into
a 16-bit word. Data from the result word table can be accessed in three
different formats. The Justification menu selects from the following
formats:

Right-justified (unsigned): with zeros in the higher order unused bits.

Left-justified (signed): with the most significant bit inverted to form
a sign bit, and zeros in the unused lower order bits. In this mode, zero is
treated as the half scale of the input range.

Left-justified (unsigned): with zeros in the unused lower order bits.

Sample time
 Block sample time; determines sample rate at which the port is monitored

QADCE Analog In

4-67

Mapping Bits To Hardware Pins
Use the following table to work out how the block ports and bits map to
processor pins on the MPC565 in multiplexed mode.

In summary

• No multiplexing:

channels available 44-59 and 64-87

• A only multiplexing:

channels available 0-31; 48-51; 55-59; 64-87

• B only multiplexing:

channels available 0-31; 48-59; 64-71; 75-87

• A and B multiplexing:

channels available 0-31; 48-51; 55-59; 64-71; 75-87

Multiplexed Scan Mode

Port Pin
Name

Analog Pin
Name

Other Functions Pin Type
(I/O)

Channel
Number

ANw/A_PQB(0) AN(00) to AN(07) - Input 0 to 7

ANx/A_PQB(1) AN(08) to AN(15) - Input 8 to 15

ANy/A_PQB(2) AN(16) to AN(23) - Input 16 to 23

ANz/A_PQB(3) AN(24) to AN(31) - Input 24 to 31

A_PQB(0) AN(44) ANw Input/Output 44

A_PQB(1) AN(45) ANx Input/Output 45

A_PQB(2) AN(46) ANy Input/Output 46

A_PQB(3) AN(47) ANz Input/Output 47

A_PQB(4) AN(48) - Input/Output 48

A_PQB(5) AN(49) - Input/Output 49

A_PQB(6) AN(50) - Input/Output 50

QADCE Analog In

4-68

A_PQB(7) AN(51) - Input/Output 51

A_PQA(0) AN(52) MA(0) Input/Output 52

A_PQA(1) AN(53) MA(1) Input/Output 53

A_PQA(2) AN(54) MA(2) Input/Output 54

A_PQA(3) AN(55) - Input/Output 55

A_PQA(4) AN(56) - Input/Output 56

A_PQA(5) AN(57) - Input/Output 57

A_PQA(6) AN(58) - Input/Output 58

A_PQA(7) AN(59) - Input/Output 59

B_PQB(0) AN(64) - AMUX Input 64

B_PQB(1) AN(65) - AMUX Input 65

B_PQB(2) AN(66) - AMUX Input 66

B_PQB(3) AN(67) - AMUX Input 67

B_PQB(4) AN(68) - AMUX Input 68

B_PQB(5) AN(69) - AMUX Input 69

B_PQB(6) AN(70) - AMUX Input 70

B_PQB(7) AN(71) - AMUX Input 71

B_PQA(0) AN(72) MA(0) AMUX Input 72

B_PQA(1) AN(73) MA(1) AMUX Input 73

B_PQA(2) AN(74) MA(2) AMUX Input 74

B_PQA(3) AN(75) - AMUX Input 75

Multiplexed Scan Mode (Continued)

Port Pin
Name

Analog Pin
Name

Other Functions Pin Type
(I/O)

Channel
Number

QADCE Analog In

4-69

In this table, MA(0) to MA(2) indicates these pins (A_ and B_PQA(0)-(2)) are
used as output pins to drive an external demultiplexer.

B_PQA(4) AN(76) - AMUX Input 76

A_PQA(5) AN(77) - AMUX Input 77

A_PQA(6) AN(78) - AMUX Input 78

A_PQA(7) AN(79) - AMUX Input 79

- AN(80) - 80

- AN(81) - 81

- AN(82) - 82

- AN(83) - 83

- AN(84) - 84

- AN(85) - 85

- AN(86) - 86

- AN(87) - 87

Multiplexed Scan Mode (Continued)

Port Pin
Name

Analog Pin
Name

Other Functions Pin Type
(I/O)

Channel
Number

QADCE Digital In

4-70

4QADCE Digital InPurpose Input driver enables use of Queued Analog-Digital Converter (QADC64) pins
as digital inputs on an MPC565

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/
Enhanced Queued Analog-To-Digital Converter Module-64

Description The QADC Digital In block allows you to treat the QADC64E pins as digital
inputs. Each QADC64E module has two 8-bit ports, A and B. You can use any
bit on either port as a digital input.

Dialog Box

QADC module
 Select module A or B.

Port
 Select an 8 bit port (A or B) on the module.

QADCE Digital In

4-71

Bits
 Specify a vector of bits (numbered 0-7) to read. The vector should not be
longer than eight elements. Depending on the selected port, the bits
entered correspond to pins PQA0 to PQA7 (port A) or PQB0 to PQB7.

Sample time
 Block sample time; determines sample rate at which the port is monitored

Serial Receive

4-72

4Serial ReceivePurpose Configure MPC555 for serial receive on either of the QSMCM submodules SCI1
or SCI2.

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/
Serial Communications Interface (SCI)

Description The Serial Receive block receives bytes via either of the MPC555 QSMCM
submodules SCI1 or SCI2. It requests either a fixed number of bytes to be
received, or, by enabling the first input, a variable number of bytes can be
requested each time this block is called. When the block is called, the requested
number of bytes are retrieved from a hardware buffer provided by the
submodule SCI1 or SCI2. On SCI1, the size of this buffer is 1 byte. On SCI2,
the total size of the buffer is 16 bytes; note however that the effective capacity
is reduced due to the hardware behavior and the circular mode of buffer
operation used by the software driver. You should design your application on
the basis of 9 bytes for the maximum buffer size for SCI2.

If the buffer contains fewer bytes than the number requested, these bytes are
pulled from the buffer and made available at the block output. The number of
bytes actually retrieved from the buffer is made available at the second output.
This block will only retrieve bytes that have already been received and placed
in the hardware buffer; it will never wait for additional data to be received.

To configure the serial interface bit rate and data format, see “Serial
Communications Interface (SCI) Configuration Parameters” on page 4-56.

The device driver used for the Serial Receive block does not require the use of
CPU interrupts.

Serial Receive

4-73

Block Inputs and Outputs

The first input can be enabled so a variable number of bytes can be requested
each time.

The second input, if enabled, is a reset signal, which must have a Boolean data
type. You must reset the SCI1 module if an overrun error or framing or parity
error occurs. No reset is required for SCI2.

The first output (marked Data) pulls bytes from the buffer — either the
number requested or the number available, whichever is the lower. Note that
the number requested is the value of the first input signal if supplied, or the
width of output signal otherwise.

The second output (marked Num) is the number of bytes actually retrieved from
the buffer. Up to four outputs can be enabled — the third showing framing
error and parity error flags, and the fourth showing overrun flags.

See “Data Type Support and Scaling for Device Driver Blocks” on page 4-12 for
information on supported input/output data types and scaling of input/output
signals.

Dialog Box

Serial Receive

4-74

SCI module
Select either 1 or 2 (to choose module SCI1 or SCI2).

Show requested number of bytes input port
Enables an inport (the top one if there are two) where you can input the
number of bytes to request.

Maximum number of bytes
Maximum number of bytes to receive (this is only visible if the requested
number of bytes input port is enabled). This sets an upper limit on the
number of bytes that will be read each time the block is called.

Show reset port
Enables the reset input (the lower inport).

Show actual number of bytes output port
Enables another output that shows the number of bytes actually read from
the SCI buffer.

Show framing error and parity error flags
Enables another output. This output is zero if no framing or parity error
occurred during the current read; it is true (1) otherwise. Note that for
SCI1 only, a reset is required once a data overrun has occurred.

Show overrun flag
Enables another output. This output is true (1) if a data overrun occurred.
Note that for SCI1 only, a reset is required once a data overrun has
occurred.

Sample time
The time interval between samples. To inherit the sample time, set this
parameter to -1. See “Specifying Sample Time” in the Simulink
documentation for more information.

Serial Transmit

4-75

4Serial TransmitPurpose Configure MPC555 for serial transmit, using one of the QSMCM submodules
SCI1 or SCI2

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/
Serial Communications Interface (SCI)

Description The Serial Transmit block transmits bytes via either of the MPC555 QSMCM
submodules SCI1 or SCI2. You can use it either to transmit a fixed number of
bytes, or, by enabling the second input, transmit a variable number of bytes
each time this block is called. With SCI1, a hardware buffer is used that allows
up to 16 bytes to be queued for transmission. With SCI2, the buffer allows only
up to one byte to be queued each time the block is called. Once bytes are queued
for transmit, they will be sent as fast as possible by the serial interface
hardware with no further intervention required by the rest of the application.

If the hardware buffer is not empty when the block is called, i.e., the previous
transmission is not yet complete, then no new bytes will be queued for
transmit. This condition can be identified from the “actual number of bytes”
block output; if no bytes were queued for transmit, this output returns zero.

To configure the serial interface bit rate and data format, see “Serial
Communications Interface (SCI) Configuration Parameters” on page 4-56.

The device driver used for the Serial Transmit block does not require the use
of CPU interrupts.

Serial Transmit

4-76

Block Inputs and Outputs

The first input contains the data to be transmitted; this input signal may be
either a vector or scalar with data type uint8. The optional second input must
be a scalar and may be used to control the number of bytes transmitted. The
number of bytes to transmit should not be greater than the width of the first
input signal.

The block output port “actual number of bytes output” gives the number of
bytes queued for transmit. If the previous transmission was complete, this
number will be equal to the requested number of bytes to transmit, provided
that this was less or equal to 16 in the case of SCI1, or 1 in the case of SCI2.
See “Data Type Support and Scaling for Device Driver Blocks” on page 4-12 for
information on supported input/output data types and scaling of input/output
signals.

Dialog Box

SCI module
Select either 1 or 2 (to choose module SCI1 or SCI2).

Show requested number of bytes input port
Enable/disable the input for number of bytes to send. If cleared, the
number of bytes sent is just the width of the first inport; if selected, the
second input is enabled, which controls the number of bytes to send.

Serial Transmit

4-77

Show number of bytes output port
Enable/disable the output port for number of bytes actually sent. If
selected, this value is available from the first output.

Sample time
The time interval between samples. To inherit the sample time, leave this
parameter at the default -1. See “Specifying Sample Time” in the Simulink
documentation for more information.

TouCAN Error Count

4-78

4TouCAN Error CountPurpose Count transmit and/or receive errors detected on selected TouCAN modules

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/
CAN 2.0B Controller Module

Description The TouCAN Error Count block maintains and reports a count of errors
detected by the selected TouCAN module during receive and transmit. The
receive and transmit error counts are output to the RX and TX outputs of the
block, respectively.

The error counts also drive the TouCAN Warnings block outputs. (See
“TouCAN Warnings” on page 4-92.)

Dialog Box

Module
Select TouCAN module A, B or C. Note that the MPC555 only has modules
A and B. MPC56x (561-6) also have module C. An error will be thrown if
you select C and your target processor does not support this.

Sample time
Sample time of the block.

Enable pass through (show simulation input)
Driver block-based pass through is being deprecated in Release 14 and you
will see a warning if you select this option. This feature will be removed in

TouCAN Error Count

4-79

a future release. Please use the replacement mechanism as shown in the
demo model, mpc555_fuelsys_project.

TouCAN Fault Confinement State

4-80

4TouCAN Fault Confinement StatePurpose Indicate the state of a TouCAN module

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/
CAN 2.0B Controller Module

Description The TouCAN Fault Confinement State block provides an indicator for the state
of the selected TouCAN module. The block obtains and outputs a field of two
bits from the TouCAN module’s Error and Status (ESTAT) register. The
possible states are shown in the table below.

Refer to section 16, “CAN 2.0B Controller Module,” in the MPC555 Users
Manual for further information.

Dialog Box

FCS State Values

State Value Description

Error Active 00 Normal operation

Error Passive 01 Listening only mode. The device cannot
transmit.

Bus Off 1x The device is not allowed to transmit or
receive and is effectively cut off from the
bus.

TouCAN Fault Confinement State

4-81

Module
Select TouCAN module A, B or C. Note that the MPC555 only has modules
A and B. MPC56x (561-6) also have module C. An error will be thrown if
you select C and your target processor does not support this.

Sample time
Sample time of the block.

Enable pass through (show simulation input)
Driver block-based pass through is being deprecated in Release 14 and you
will see a warning if you select this option. This feature will be removed in
a future release. Please use the replacement mechanism as shown in the
demo model, mpc555_fuelsys_project.

TouCAN Interrupt Generator

4-82

4TouCAN Interrupt GeneratorPurpose Generate an asynchronous function-call trigger when a CAN interrupt occurs.

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/
CAN 2.0B Controller Module

Description The TouCAN Interrupt Generator block generates a function-call trigger
within the context of a TouCAN interrupt service routine, which can be used to
asynchronously execute a function-call subsystem in the model.

This block may be used to execute a function-call subsystem on occurrence of
Bus Off, Error, Wake, or buffer 0-15 interrupts.

Do not use this block unless you are aware of the dangers of using
asynchronous interrupts in the model. Unpredictable data loss or model
behavior may result unless extreme caution is taken.

For faster interrupts, you can disable floating-point support via the Use
floating point option. However, if you disable floating-point support, do not
use blocks that require floating-point operations in your model. Use of such
blocks will cause a floating-point exception at run-time.

Dialog Box

Module
Select TouCAN module A, B or C. Note that the MPC555 only has modules
A and B. MPC56x (561-6) also have module C. An error will be thrown if
you select C and your target processor does not support this.

TouCAN Interrupt Generator

4-83

Interrupt source
Choose the interrupt source (Bus Off, Error, Wake or Buffer 0-15) for your
ISR generator.

Use floating point
Enable or disable floating-point support.

TouCAN Receive

4-84

4TouCAN ReceivePurpose Receive CAN messages from the TouCAN module on the MPC555

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/
CAN 2.0B Controller Module

Description The TouCAN Receive block receives CAN messages from the TouCAN module.

The TouCAN Receive block can reserve any of the 16 buffers on the TouCAN
module. Alternatively, you can instruct the TouCAN Receive block to select a
hardware buffer automatically from the available buffers.

The TouCAN Receive block has two outputs in default mode: a data output and
a function call trigger output. You should use a function call subsystem,
activated by the trigger, to decode the message available at the TouCAN
Receive block data output. Alternatively you can use the block with an
interrupt driven queue, and in this mode the block has only one output, as
described below.

The default mode of operation is that the TouCAN Receive block polls its
message buffer at a rate determined by the block’s sample time. When the
TouCAN Receive block detects that a message has arrived, the function call
trigger is activated.

Alternatively, the TouCAN Receive block may be used with an interrupt driven
queue. In this case, you can use the TouCAN Interrupt Generator block to
trigger an interrupt each time a message is received in the hardware buffer
allocated to the block. Place the TouCAN Receive block inside the interrupt
subsystem. The function that services this interrupt then moves the contents
of the hardware buffer into a FIFO queue. In this mode, instead of polling the
hardware buffer directly, the block polls the FIFO. On each block update, it
clears the FIFO by processing the messages in turn; a separate function call is
generated for each message that is extracted from the FIFO.

If it is known that the sample time is smaller than the minimum time between
messages that the block must receive then you should use the standard mode
of operation where the hardware buffer is polled directly. However, if the
messages may be arriving faster than the block is polling the buffer, you should
use the FIFO mode.

Tip: if you need to receive several different messages with different identifiers,
arriving at irregular intervals, into a single buffer, you can use one of the

TouCAN Receive

4-85

dedicated receive masks for buffers 14 or 15 along with a CAN Message Filter
block, and a TouCAN Receive block operating in FIFO mode. See the Masks
parameters in “TouCAN Configuration Parameters” on page 4-52.

Dialog Box

TouCAN module
Select one of the two TouCAN modules (A or B) on the MPC555. MPC56x
(561-6) also have module C. The TouCAN modules can receive messages
independently. Note that an error will be thrown if you select C and your
target processor does not support this.

CAN message identifier
The identifier of the message you want to receive. Note that if you have set
the TouCAN configuration parameters (see “MPC555 Resource
Configuration” on page 4-41) in your model to mask out certain bits (e.g.,
the message identifier field) you may receive messages with identifiers
other than the identifier specified here.

TouCAN Receive

4-86

New message notification via:
Function Call Output — Synchronous notification that a new message
has arrived.

TouCAN Interrupt Generator' block — If you select this option you
must place the TouCAN Receive block in a function-call subsystem that is
asynchronously triggered by a TouCAN Interrupt Generator block (as
shown below). When you select this option, the function call output is no
longer required, and disappears. Make sure you select the same receive
buffer within the TouCAN Interrupt Generator and the TouCAN Receive
block. When a message is received in the specified buffer the TouCAN
Interrupt Generator block generates a function-call trigger (within the
context of a TouCAN interrupt service routine), which can be used to
asynchronously execute the function-call subsystem containing the
TouCAN Receive block. See “TouCAN Interrupt Generator” on page 4-82
for details.

Automatically select buffer
When this option is selected, the TouCAN Receive block automatically
selects a receive buffer from the available buffers. We recommend that you
use this automatic buffer selection, unless you want to use buffer 14 or 15,
which can be masked, to receive multiple CAN message identifiers in a
single buffer. See the Mask parameters in “TouCAN Configuration
Parameters” on page 4-52.

Buffer number [0..15]
This field is enabled if the Automatically select buffer option is cleared.
Buffer number specifies the identifier of the receive buffer for this block.

TouCAN Receive

4-87

We recommend that you select Automatically select buffer instead of
manually specifying the buffer, unless you want to use buffer 14 or 15,
which can be masked, to receive multiple CAN message IDs in a single
buffer. See the Mask parameters in “TouCAN Configuration Parameters”
on page 4-52.

Use interrupt driven queue to buffer received messages
Use the FIFO mode if the messages may be arriving faster than the block
is polling the buffer. Do not use this option if the sample time may be
shorter than the minimum time between messages.

Length (number of messages) of interrupt driven queue
This field is enabled if you select the interrupt driven queue option, then
you can specify a number of messages.

CAN message type
The type of message you want to receive. Select either Standard(11-bit
identifier) or Extended(29-bit identifier).

Sample time
Determines the rate at which to sample the buffer to see if a new message
has arrived. Set to -1 (inherited) if using this block in a function-call
subsystem triggered by the TouCAN Interrupt Generator block.

Note The TouCAN Receive block sample time should be set to a value that is
smaller than the minimum time between CAN messages that will be received
into the corresponding buffer. If the minimum time between messages may be
shorter, use the FIFO mode (select interrupt driven queue). Otherwise if more
than one message is received into a buffer during a single sample interval, the
older message will be overwritten.

TouCAN Soft Reset

4-88

4TouCAN Soft ResetPurpose Reset a TouCAN module

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/
CAN 2.0B Controller Module

Description When the TouCAN Soft Reset block executes, the TouCAN module resets its
internal state. The TouCAN error counters will be reset. The Fault
Confinement State will be reset to the Error Active state, provided the TouCAN
module has not reached the Bus Off state. See “TouCAN Fault Confinement
State” on page 4-80.

We recommend that you place this block in a triggered subsystem, with a
sample time of -1 (inherited).

Dialog Box

Module
Select TouCAN module A, B or C. Note that the MPC555 only has modules
A and B. MPC56x (561-6) also have module C. An error will be thrown if
you select C and your target processor does not support this.

Sample time
Sample time of the block.

TouCAN Transmit

4-89

4TouCAN TransmitPurpose Transmit a CAN message via a TouCAN module on the MPC555

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/
CAN 2.0B Controller Module

Description The TouCAN Transmit block transmits a CAN message onto the CAN bus. The
TouCAN Transmit block uses the queue set up by the MPC555 Resource
Configuration object (see “MPC555 Resource Configuration” on page 4-41). The
block should be connected to CAN Message Packing/Unpacking blocks. Do not
ground the block or leave it unconnected. See the demos mpc555rt_io and
mpc555rt_candb for an example.

The TouCAN Transmit block provides three different transmission modes. You
should choose which transmission mode to use depending on the requirements
of your application. The properties of each transmission mode are summarized
in the following table.

Transmit Modes

Priority queued
transmission with shared
buffer

Direct transmission
with dedicated buffer

FIFO queued
transmission with
dedicated buffer

Uses
Interrupts

Yes No Yes

Configurable
queue size

Yes No Yes

Order of
message
transmission

Messages transmitted in
order of priority; a new
message will overwrite
any existing message that
is in the queue and has
the same identifier and
type (standard or
extended)

Most recent message
overwrites any
unsent message in
the buffer

Messages
transmitted in the
order that they
were placed in the
queue

TouCAN Transmit

4-90

For applications where the message contains time-sensitive (e.g. real-time
sensor readings) information, it is recommended to use one of the Priority
queued transmission with shared buffer or Direct transmission with
dedicated buffer modes. For applications where it is more important that
messages are received in the order that they were queued for transmission (e.g.
a data logging protocol), it is recommended to use the FIFO queued
transmission with dedicated buffer mode.

Note that the Queued transmission with shared buffer mode can use one
or three shared buffers depending upon the setting in the Resource
Configuration block. When three buffers are used, the driver ensures that the
message entered into arbitration to be transmitted via the CAN bus is always
the highest priority message available; furthermore in this mode the TouCAN
module is able to transmit messages continuously by re-loading hardware
buffers that become empty while another buffer is active transmitting.

Hardware
buffers
consumed

Either one or three
hardware buffers are
shared by many CAN
Transmit blocks

One hardware buffer
required for each
CAN Transmit block

One hardware
buffer required for
each CAN
Transmit block

CPU time
required

Generally more than the
other modes; interrupts
used but time required to
service interrupts is
longer because it takes
account of message
priorities and increases
with queue length

Very little; no
interrupts used

Little; interrupts
used but very
simple interrupt
service routine

Transmit Modes

Priority queued
transmission with shared
buffer

Direct transmission
with dedicated buffer

FIFO queued
transmission with
dedicated buffer

TouCAN Transmit

4-91

Dialog Box

Module
Select TouCAN module A, B or C. Note that the MPC555 only has modules
A and B. MPC56x (561-6) also have module C. An error will be thrown if
you select C and your target processor does not support this.

Transmit mode
Select one of the transmit modes described in the table.

Length (number of messages) of FIFO queue
If you select the FIFO transmit mode, you can set the number of messages
in the FIFO queue here. Note this is only for the FIFO queue and is not the
same as the Transmit_Queue_Length Resource Configuration parameter in
“TouCAN Configuration Parameters” on page 4-52, which only applies to
shared queues.

Sample time
Choose -1 to inherit the sample time from the driving blocks. The TouCAN
Transmit block does not inherit constant sample times and runs at the base
rate of the model if driven by invariant signals.

Enable pass through (show simulation input)
Driver block-based pass through is being deprecated in Release 14 and you
will see a warning if you select this option. This feature will be removed in
a future release. Please use the replacement mechanism as shown in the
demo model, mpc555_fuelsys_project.

TouCAN Warnings

4-92

4TouCAN WarningsPurpose Flag excessively high transmit or receive error counts on TouCAN modules

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/
CAN 2.0B Controller Module

Description The TouCAN Warnings block has two logical outputs, RX and TX. If the transmit
error counter is over 95, then the TX output goes high. If the receive error
counter is over 95, then the RX output goes high.

Use this block, in conjunction with a TouCAN Error Count block, to monitor
error conditions on a selected TouCAN module.

Dialog Box

Module
Select TouCAN module A, B or C. Note that the MPC555 only has modules
A and B. MPC56x (561-6) also have module C. An error will be thrown if
you select C and your target processor does not support this.

Sample time
Sample time of the block.

Enable pass through (show simulation input)
Driver block-based pass through is being deprecated in Release 14 and you
will see a warning if you select this option. This feature will be removed in
a future release. Please use the replacement mechanism as shown in the
demo model, mpc555_fuelsys_project.

TPU3 Digital In

4-93

4TPU3 Digital InPurpose Configure a Time Processor Unit (TPU3) channel for digital input

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/
Time Processor Unit (TPU3)

Description The TPU3 Digital In block reads the logical state of the selected pin (channel)
on the TPU3 submodules of the MPC555 or MPC56x. You can use this block in
the same way as the MIOS Digital In block. You might need to use this block
instead of the MIOS Digital In block, for example, if TPU is available but not
MIOS. The Channel priority field specifies a number in the range 0..15,
corresponding to 16 independent timer channels on each of the modules of the
TPU3. The output of the block represents the logic state of the pin referenced
in the module and channels fields. When the signal on a given pin is a logical
1, the block output signal will be equal to 1; otherwise the block output element
will equal zero.

The TPU has 16 channels on each module A and B (MPC565 and 566 also have
module C). You can use each of these channels independently, so for an
MPC555 you could use up to 32 of these blocks, specifying different channels,
at once.

Refer to Section 17, “Time Processor Unit 3,” in the MPC555 Users Manual for
further information, and the TPU3 Digital I/O Application Programming Note
(search for “TPUPN18/D”).

For an example showing how to use this block see the mpc555rt_io demo.

TPU3 Digital In

4-94

Dialog Box

TPU module
 Select TPU module A, B or C; each has 16 channels. Note that the MPC555
only has modules A and B. MPC565 and MPC566 also have module C. An
error will be thrown if you select C and your target processor does not
support this.

TPU channel number
Choose 0-15.

Channel priority
Choose Low, Medium or High

The host CPU makes a channel active by assigning it one of the three
priorities. You choose the order in which channels are serviced by setting
the channel number and assigned priority. The order in which channels are
serviced is determined by assigned priority first, followed by channel
number (lowest number first).

Sample time
The default is always 0.1 for input driver blocks, but you will need to
change this to suit the frequency of your input signals.

TPU3 Digital In

4-95

Enable pass through (show simulation input)
Driver block-based pass through is being deprecated in Release 14 and you
will see a warning if you select this option. This feature will be removed in
a future release. Please use the replacement mechanism as shown in the
demo model, mpc555_fuelsys_project.

TPU3 Digital Out

4-96

4TPU3 Digital OutPurpose Configure a Time Processor Unit (TPU3) channel for digital output

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/
Time Processor Unit (TPU3)

Description The TPU3 Digital Out block sets the state of the selected pin (channel) on the
TPU3 submodule of the MPC555 (or MPC565 or MPC566). The Channel
priority field specifies a number in the range 0..15, corresponding to the 16
independent channels on each TPU3 module (A, B or C). You can use each of
these channels independently, so you could use up to 32 of these blocks (48 for
an MPC565 or MPC566) specifying different channels at once.

When the input signal is greater than zero, a logical 1 is written to the
corresponding pin. When the input signal is less than or equal to zero, a logical
zero is written to the corresponding channel.

Refer to Section 17, “Time Processor Unit 3”, in the MPC555 Users Manual and
the TPU3 Digital I/O Application Programming Note (search for
“TPUPN18/D”) for further information about the TPU3.

For an example showing how to use this block see the mpc555rt_io demo.

Dialog Box

TPU3 Digital Out

4-97

TPU Module
 Select TPU module A, B or C; each has 16 channels. Note that the MPC555
only has modules A and B. MPC565 and MPC566 also have module C. An
error will be thrown if you select C and your target processor does not
support this.

TPU channel number
Choose 0-15.

Channel priority
Choose Low, Medium or High.

The host CPU makes a channel active by assigning it one of the three
priorities. You choose the order in which channels are serviced by setting
the channel number and assigned priority. The order in which channels are
serviced is determined by assigned priority first, followed by channel
number (lowest first).

Sample time
Default -1: this setting specifies that the block inherits its sample time
from the block connected to its input (inheritance) (unless it is in a
triggered subsystem). It makes no sense to sample faster than your input
is changing, so normally you leave this at the default.

TPU Digital Out doesn’t use a timebase. The output pin is written to at the
rate specified by the block sample time. See “Time Processor Unit (TPU3)
Configuration Parameters” on page 4-55 for details on settings for the
TCR1 clock. See also the TPU3 Digital In Application Programming Note
(search for “TPUPN18/D”).

Enable pass through (show simulation input)
Driver block-based pass through is being deprecated in Release 14 and you
will see a warning if you select this option. This feature will be removed in
a future release. Please use the replacement mechanism as shown in the
demo model, mpc555_fuelsys_project.

TPU3 Fast Quadrature Decode

4-98

4TPU3 Fast Quadrature DecodePurpose Configure a pair of TPU3 channels for Fast Quadrature Decode (FQD)

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/
Time Processor Unit (TPU3)

Description The TPU3 Fast Quadrature Decode block decodes position information from
quadrature encoder hardware. The relative phase of a pair of input signals is
used to determine direction of movement. The signals are decoded to increment
or decrement the position counter (block output). You can derive a speed from
the position information. It is particularly useful for decoding position and
direction information from a slotted encoder in motion control systems.

In normal mode (the default), the position counter is incremented or
decremented for each valid transition on either channel. The counter
increments when the primary channel is ahead and decrements when the
primary channel lags. A switch in the phase relationship indicates a change of
direction.

At certain speeds you may want to switch to fast mode. You can supply an input
to tell the block to switch to fast mode under specified conditions. In fast mode
only one of the two input signals is read. The position counter increments or
decrements by 4 for each rising transition on the primary channel only (instead
of once for each transition in each signal). This reduces the TPU processing
load; you can also decode at more than four times the maximum count rate of
normal mode.

The counter is 16 bit and free flowing (that is, it overflows to 0, and underflows
to 0xFFFF). You must take care when calculating speed derived from the
counter, as it may be necessary to use two’s complement arithmetic. A useful
document is the TPU Fast Quadrature Decode Programming Note—search for
“TPUPN02/D.”

It is possible to overload the TPU processor; if you observe unexpected behavior
you should consult the TPU documentation. Refer to Section 17, “Time
Processor Unit 3,” in the MPC555 Users Manual for further information.

TPU3 Fast Quadrature Decode

4-99

Dialog Box

TPU module
 Select TPU module A, B or C; each has 16 channels. Note that the MPC555
only has modules A and B. MPC565 and MPC566 also have module C. An
error will be thrown if you select C and your target processor does not
support this.

TPU channel numbers (primary and secondary)
Select a pair of consecutive channels from (0 and 1) to (14 and 15). The
primary channel is always the lower channel number.

Channel priority:
Choose Low, Medium, or High

The order in which channels are serviced is determined by assigned
priority first, followed by channel number (lowest number first).

TPU3 Fast Quadrature Decode

4-100

Show Fast Mode port
This option is unselected by default. Left unselected, the block always
operates in Normal mode. If you select this option, an inport appears where
you can input a Boolean signal to control the mode of operation (for
example, from a Stateflow subsystem): 0 or false =Normal Mode; 1 or true
=Fast Mode.

Fast mode conserves TPU activity by only reading one of the two signals.
This also allows you to decode at more than four times the maximum count
rate of Normal mode. This may be appropriate at some speeds where you
can assume the behavior of the second sign—instantaneous direction
change is assumed to be impossible. The counter is updated in the same
direction as when the last transition was serviced in Normal Mode. The
position counter is incremented or decremented by 4 for every rising
transition read on the primary channel, instead of having to read all four
transitions in the two signals.

Initial value for POSITION_COUNT
Set an initial value. Range checking is applied (must be 16 bit).

POSITION_COUNT parameter alias (optional)
Provide a name that blocks such as the TPU3 New Input Capture/Input
Transition Counter can use to refer to the POSITION_COUNT Fast
Quadrature Decode parameter. Using a name is clearer than using
absolute channel and parameter indices to refer to the position count from
another TPU block.

Sample time
The default is always 0.1 for input driver blocks, but you will need to
change this to suit the frequency of your input signals.

This block uses TCR1 as a timebase, but the functionality of the TPU Fast
Quadrature Decode (FQD) function used by the block is not changed by
changing the speed of the TCR1 clock. The Position Count output is
incremented at a rate entirely controlled by the rising and falling edges of
the pair of input waveforms, (and the Fast mode input). See “Time
Processor Unit (TPU3) Configuration Parameters” on page 4-55 for more
information on the TCR1 timebase settings.

TPU3 Fast Quadrature Decode

4-101

Enable pass through (show simulation input)
Driver block-based pass through is being deprecated in Release 14 and you
will see a warning if you select this option. This feature will be removed in
a future release. Please use the replacement mechanism as shown in the
demo model, mpc555_fuelsys_project.

TPU3 New Input Capture/Input Transition Counter

4-102

4TPU3 New Input Capture/Input Transition CounterPurpose Configure a Time Processor Unit (TPU3) channel for New Input Capture/Input
Transition Counter (NITC)

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/
Time Processor Unit (TPU3)

Description The TPU3 New Input Capture/Input Transition Counter block counts
transitions on the input pin and/or captures a TCR timebase value or a TPU
parameter RAM value after a certain number of transitions. You can select the
number of transitions and whether to capture on rising or falling transitions or
both.

You can select up to three outputs to display. Each will have a separate outport:

• FINAL_TRANS_TIME shows the captured value each time the maximum
number of transitions (MAX_COUNT) is reached

• TRANS_COUNT shows the number of transitions counted (resets each time
MAX_COUNT is reached)

• LAST_TRANS_TIME shows the captured value at the most recent transition,
updated at every transition (except final transitions). At the final transition
LAST_TRANS_TIME shows the captured value at the previous transition.

You can choose whether to capture the TCR1 timebase value each time the
MAX_COUNT number of transitions is reached, or you can specify the address of
a TPU parameter in RAM to capture at that moment. Note this block always
operates in continuous mode, not single-shot—transitions are counted up to
MAX_COUNT and then the block resets and continues counting from zero.

We cannot guarantee that the three outputs are read coherently. They are read
one after another, and it is possible that while the memory is accessed for one
parameter the next to be read may have changed value. This depends on the
speed of your input signal. This should not be important for most purposes
because only TRANS_COUNT or FINAL_TRANS_TIME will be the outputs of interest.

As an example, you could use this block in conjunction with the TPU3 Fast
Quadrature Decode block for calibration purposes. Quadrature encoders often
generate an index signal in addition to the pair of signals whose relative phase
contains the position information. You could put this index signal into an NITC
input to count pulses in order to calibrate the position of the encoder.

TPU3 New Input Capture/Input Transition Counter

4-103

Refer to Section 17, “Time Processor Unit 3,” in the MPC555 Users Manual for
further information. A particularly useful document is the TPU New Input
Capture/Input Transition Capture Programming Note—search for
“TPUPN08/D.” Look in the appropriate TPU programming note to look up
parameter addresses if you want to capture TPU Parameters instead of TCR1
clock ticks.

As an example of using TPU parameters, if you wanted to use this block to
capture the position count from a TPU Fast Quadrature Decode block, you need
to set the correct channel number and parameter address. You must set the
channel number to the primary FQD channel (FQD blocks use a pair of
channels, the first is primary). Each TPU channel can have up to eight
parameters (0 through 7), in this case you must choose parameter 1
(POSITION_COUNT).

TPU3 New Input Capture/Input Transition Counter

4-104

Dialog Box

TPU module
 Select TPU module A, B or C; each has 16 channels. Note that the MPC555
only has modules A and B. MPC565 and MPC566 also have module C. An
error will be thrown if you select C and your target processor does not
support this.

TPU channel number
Choose 0-15.

TPU3 New Input Capture/Input Transition Counter

4-105

Channel priority:
Choose Low, Medium, or High

The host CPU makes a channel active by assigning it one of the three
priorities. You choose the order in which channels are serviced by setting
the channel number and assigned priority. The order in which channels are
serviced is determined by assigned priority first, followed by channel
number (lowest number first).

Show FINAL_TRANS_TIME port
Outputs the value captured each time the maximum number of transitions
(MAX_COUNT) is reached. This value is only captured when MAX_COUNT is
reached.

Show TRANS_COUNT port
Outputs the number of transitions counted. Resets to zero each time
MAX_COUNT is reached.

Show LAST_TRANS_TIME port
Outputs the captured value at the latest transition. This is updated at
every transition except the final one.

Detect transition on:
Choose from Rising Edge, Falling Edge or Either Edge.

Capture:
TCR1 Value — captures the value of the TCR1 timebase. See “Time
Processor Unit (TPU3) Configuration Parameters” on page 4-55 for
information on setting the TCR1 timebase.

Parameter RAM Value — captures the value of a TPU parameter in RAM.
If you select this option you enable the parameters to choose the TPU
channel number and parameter address, or to specify a parameter alias.

Specify parameter location by
Channel and Parameter Index — if you select this option you enable the
two parameters to specify which TPU channel (from 0-15) and which
parameter index (out of up to eight parameters per TPU channel) you want.

Parameter Alias — If you select this option you enable the Parameter
alias edit box. For example you can specify a parameter alias for the

TPU3 New Input Capture/Input Transition Counter

4-106

POSITION_COUNT parameter in the TPU3 Fast Quadrature Decode
block. See “TPU3 Fast Quadrature Decode” on page 4-98.

Note that you cannot set the parameter location unless you have chosen
Parameter RAM Value for the Capture parameter.

TPU channel to capture parameter from
Specify which TPU channel (from 0-15) you want. This option is enabled
when you choose to specify parameter location by Channel and Parameter
Index.

Channel parameter (16-bit) to capture
Specify which parameter index (out of up to eight parameters per TPU
channel) you want. This option is enabled when you choose to specify
parameter location by Channel and Parameter Index.

Parameter alias
This option is enabled when you choose to specify parameter location by
Parameter Alias. Enter the required alias in the edit box. For example you
can specify a parameter alias for the POSITION_COUNT parameter in the
TPU3 Fast Quadrature Decode block. See “TPU3 Fast Quadrature Decode”
on page 4-98.

Number of transitions before capture and reset (MAX_COUNT)
This must be a 16-bit number specifying how many transitions to count
before capturing and then resetting. A zero will be equivalent to 1 (you
cannot count zero transitions) and you must not exceed the maximum of a
uint16 number. The range of an unsigned 16-bit number is 0-65535
(because 65535 = (2^16) - 1).

Range checking is applied; you will receive a warning if you input an
unsuitable number.

Sample time
Be sure to set sample time fast enough not to miss any transitions. This
will depend on the frequency of your input signal.

Enable pass through (show simulation input)
Driver block-based pass through is being deprecated in Release 14 and you
will see a warning if you select this option. This feature will be removed in

TPU3 New Input Capture/Input Transition Counter

4-107

a future release. Please use the replacement mechanism as shown in the
demo model, mpc555_fuelsys_project.

TPU3 Programmable Time Accumulator

4-108

4TPU3 Programmable Time AccumulatorPurpose Configure a Time Processor Unit (TPU3) channel for Programmable Time
Accumulator (PTA).

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/
Time Processor Unit (TPU3)

Description The TPU3 Programmable Time Accumulator block reads an input pin and
measures an accumulation of time over a specified number of periods - either
high time, low time, or the total time. You can output the accumulated time, or
the number of periods or both. You can choose whether to start counting total
period on a rising or falling edge.

The accumulated time value will be read at most once between any two model
steps. TPU interrupts are used to ensure the 32-bit output is updated only
when an accumulation is complete. This ensures that the values of the
parameters HW and LW combined to create the 32-bit output are coherent. This
block is under MPC555 Resource Configuration object control, and you will
receive a warning if you have not enabled TPU interrupts. If your model
contains any PTA blocks, you must change the TPU IRQ settings to enable
interrupts. See “Time Processor Unit (TPU3) Configuration Parameters” on
page 4-55.

Refer to Section 17, “Time Processor Unit 3,” in the MPC555 Users Manual for
further information. A particularly useful document is the Programmable Time
Accumulator TPU Function (PTA) Programming Note—search for
“TPUPN06/D.”

TPU3 Programmable Time Accumulator

4-109

Dialog Box

TPU module
 Select TPU module A, B or C; each has 16 channels. Note that the MPC555
only has modules A and B. MPC565 and MPC566 also have module C. An
error will be thrown if you select C and your target processor does not
support this.

TPU channel number
Choose 0-15

Channel priority:
Choose Low, Medium, or High

The host CPU makes a channel active by assigning it one of the three
priorities. You choose the order in which channels are serviced by setting
the channel number and assigned priority. The order in which channels are

TPU3 Programmable Time Accumulator

4-110

serviced is determined by assigned priority first, followed by channel
number (lowest number first).

Show time accumulation (32-bit) port
Outputs the 32-bit time accumulation value (in TCR1 clock ticks) each time
MAX_COUNT is reached. Whether the accumulation measures high time, low
time or total time depends on the Measure setting.

Show PERIOD_COUNT port
Outputs the number of periods counted.

Measure:
Choose from Total high time, Total low time, Total period (starting
on rising edge), Total period (starting on falling edge)

Number of periods to measure over (MAX_COUNT):
Set the number of periods to accumulate time over, up to a maximum of
255. The value is read each time MAX_COUNT is reached. Note that
MAX_COUNT is 8-bit here (it is 16-bit in the TPU3 New Input Capture/Input
Transition Counter block).

Sample time:
Make sure you set a sample time fast enough not to miss any periods,
depending on the frequency of your input signal.

Enable pass through (show simulation input)
Driver block-based pass through is being deprecated in Release 14 and you
will see a warning if you select this option. This feature will be removed in
a future release. Please use the replacement mechanism as shown in the
demo model, mpc555_fuelsys_project.

TPU3 Pulse Width Modulation Out

4-111

4TPU3 Pulse Width Modulation OutPurpose Configure a Time Processor Unit (TPU3) channel for pulse width modulation
(PWM) output

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library/
Time Processor Unit (TPU3)

Description The TPU3 Pulse Width Modulation Out block is used for Pulse Width
Modulation (PWM) output from the TPU3 modules. You can use this block in
the same way as the MIOS PWM Out block, and with the TPU block you can
also vary the period dynamically using a block inport. You can modulate up to
16 of these for each module (A, B or C) using any of the independent TPU
channels.

A PWM signal is a rectangular waveform whose period may or may not be
constant, and whose duty cycle can be varied, under control of a modulator
signal, between 0% and 100%. You can either control the period register
directly, or enter the desired (ideal) period and the mask will solve for the best
values for the period register. Note for the MIOS Pulse Width Modulation Out
block the period is constant, but with the TPU Pulse Width Modulation Out
block you can also vary the period of the PWM signal (using the Show PWMPER
port option you can supply the period as an input).

The TPU3 Pulse Width Modulation Out block acts as the modulator,
controlling the duty cycle and period of the signal on the output channel. There
can be one or two inputs. Input one (top) is always the duty cycle. Here an input
signal in the range 0 to 1 generates a PWM output with corresponding duty
cycle. Input signals outside this range cause the duty cycle to saturate at 0% or
100%.

You can specify the period register manually in the mask. If you select the Show
PWMPER port option, input two appears. Here you can supply the period as an
input, instead of specifying the period in the mask. PWMPER input (either
block input or specified as a mask variable) must be 16 bit values with
saturation applied to be in the range 0 <= PWM Period Register Value <=
32768 (0x8000).

This saturation means that the block will not allow you to enter a value for
PWMPER > 0x8000, or a value for ideal period that makes the PWMPER
register go outside this range.

TPU3 Pulse Width Modulation Out

4-112

The TPU Pulse Width Modulation Out block uses TCR1 as a timebase for
creating the output waveform. By changing the speed of the TCR1 clock, the
range of available PWM periods changes. See “Time Processor Unit (TPU3)
Configuration Parameters” on page 4-55 for more information on settings for
the TCR1 clock.

Refer to Section 17, “Time Processor Unit 3,” in the MPC555 Users Manual for
further information. See also the relevant TPU3 Application Programming
Note (search for “TPUPN17/D”).

For an example showing both ways to use this block (specifying the period, and
using the PWMPER port to input the period), see the mpc555rt_io demo.

 Dialog Box

TPU3 Pulse Width Modulation Out

4-113

TPU Module
 Select TPU module A, B or C; each has 16 channels. Note that the MPC555
only has modules A and B. MPC565 and MPC566 also have module C. An
error will be thrown if you select C and your target processor does not
support this.

TPU channel number
Choose 0-15

Channel priority
Choose Low, Medium, or High

The host CPU makes a channel active by assigning it one of the three
priorities. You choose the order in which channels are serviced by setting
the channel number and assigned priority. The order in which channels are
serviced is determined by assigned priority first, followed by channel
number (lowest number first).

Use input port for pulse period register value
If you select this box, the parameters relating to setting the period register
disappear because they are no longer used.

A new inport appears on the block when you select this option. Here you
can input the period register value. Saturation is applied: 0 <= x <= 32768
(0x8000). You can see an example of the block in the demo model
mpc555rt_io.

Edit period register manually
If you select this check box, you can set the Pulse period register
parameter.

Waveform ideal period
The default is 0.02. You can enter the waveform period you want by typing
in this edit box. From this the period register is calculated and appears in
the Pulse period register (PWMPER) edit box. The actual waveform
period is also calculated and displayed, see below.

Pulse period register (PWMPER)
The default is 12500. You can enter a value for the period register
here (0<= x <= 32768 (0x8000)) only if you select Edit period register
manually. The actual waveform period is calculated and displayed in the

TPU3 Pulse Width Modulation Out

4-114

actual period field. If Edit period register manually is not selected, this
edit box is gray.

Waveform actual period
You can never enter anything in this box (so it is always gray) —it is there
purely to inform you, and does not affect the model code. You might find
this information useful because actual and ideal waveform period are not
always the same—the ideal period you enter may not always be possible.

Sample time
The default is -1: This setting specifies that the block inherits its sample
time from the block connected to its input (inheritance) (unless it is in a
triggered subsystem). It makes no sense to sample faster than your input
is changing, so normally you leave this at the default.

Enable pass through (show simulation input)
Driver block-based pass through is being deprecated in Release 14 and you
will see a warning if you select this option. This feature will be removed in
a future release. Please use the replacement mechanism as shown in the
demo model, mpc555_fuelsys_project.

Watchdog

4-115

4WatchdogPurpose In the event of an application failure, time out and reset processor

Library Embedded Target for Motorola MPC555/ MPC555 Driver Library

Description The Watchdog block lets you set the time-out period for the watchdog timer.
The watchdog timer is a safety feature that is used to monitor correct behavior
of the application. The timer is loaded with an initial value and counts down
from this value. If the timer ever reaches zero, a watchdog time-out occurs,
forcing a processor reset.

In normal operation, the watchdog timer is serviced at a regular interval (each
model step) by the application code; this occurs at a higher frequency than the
Watchdog Timeout parameter period. Therefore the counter never reaches
zero and a processor reset is never triggered.

In the event of a software failure that causes the application to lock up, the
watchdog timer will not be serviced. Therefore, it will time out when the
counter reaches zero. This in turn causes a processor reset, which restarts the
application.

You do not need to include a Watchdog block in your model unless you want to
change the Watchdog Timeout parameter period to a value other than the
default. By default, the watchdog timer is enabled and the time-out period is
set to the largest possible value, which is several seconds, depending on system
frequency.

Note that the Watchdog block has neither input nor output connections.

Watchdog

4-116

Dialog Box

Watchdog Timeout
The Watchdog Timeout period must be set to a value that is larger than
the fastest sample rate in the system, because this is the rate at which the
watchdog timer is serviced. To set the Watchdog Timeout period, place a
Watchdog block anywhere in the model and open its dialog box.

A

Toolchains and Hardware

This section discusses specific settings for different cross-development environments:

Setting Up Your Installation with Diab
Cross-Compiler and SingleStep
Debugger (p. A-3)

Configuring the Embedded Target for Motorola MPC555
for use with the Diab development tools.

Setting Up Your Installation with
Metrowerks CodeWarrior (p. A-7)

Configuring the Embedded Target for Motorola MPC555
for use with the Metrowerks CodeWarrior development
tools

Setting Up Your Target Hardware
(p. A-10)

Configuring the required connections and jumper settings
for the Phytec phyCORE-MPC555 development board

CAN Hardware and Drivers (p. A-13) Configuring supported CAN hardware and software.

Configuration for Nondefault
Hardware (p. A-14)

Manual configuration for different MPC555 hardware,
including altering boot code and tool configurations for
different hardware clock speeds, ports, and boards.

Integrating External Blocksets
(p. A-17)

How to configure the makefile to integrate custom
precompiled block libraries with the MPC555 build
process.

A Toolchains and Hardware

A-2

Setting Up Your Toolchain
The currently supported toolchains are WindRiver (Diab and SingleStep) and
CodeWarrior. You must first install and configure your toolchain to work with
the Embedded Target for Motorola MPC555. The necessary steps are described
in the following sections:

• “Setting Up Your Installation with Diab Cross-Compiler and SingleStep
Debugger” on page A-3

• “Setting Up Your Installation with Metrowerks CodeWarrior” on page A-7

Note Do not install your toolchain in a directory with spaces in the name.
This may cause build failures.

Setting Up Your Installation with Diab Cross-Compiler and SingleStep Debugger

A-3

Setting Up Your Installation with
Diab Cross-Compiler and SingleStep Debugger

To use the Embedded Target for Motorola MPC555 with the Diab
cross-compiler, you need the following:

• An MPC555 development board (such as the phyCORE-MPC555
development board, or the Axiom board) and a debugger connector (such as
the WindRiver Vision Probe or the BDM Wiggler from Macraigor Systems).
Note the phyCORE-MPC555 board comes with built-in debugger connector
into which you can directly plug a parallel port connector, in which case you
may not require a BDM connector.

• Wind River Systems Diab cross-compiler (version 5.1.2 or later)

• Wind River Systems SingleStep debugger

- Version 7.7.3 (debug via Vision Probe BDM connector only)

- Version 7.6.2 (MPC555 only) (debug via Wiggler, Raven / Blackbird,
On-board BDM). Note to use these BDM devices you must set up
nondefault target preferences, as detailed below.

Install Diab Cross-Compiler
If you have not already done so, install the Diab cross-compiler, following the
installation instructions provided by Wind River Systems. When the installer
prompts for Components, select Diab C Compiler. When the installer prompts
for a Target, select PowerPC and all related components.

You do not need to set a default processor or other compiler defaults. During
the code generation and build process, the Embedded Target for Motorola
MPC555 will generate a makefile that sets the correct options.

You will need to note the path to the installed compiler in order to configure
your target preferences (see “Setting Target Preferences for Diab and
SingleStep” on page A-4).

Install SingleStep Debugger
The SingleStep debugger, in conjunction with the Embedded Target for
Motorola MPC555, lets you download, run and debug generated code.

Follow the instructions of the SingleStep installer. During installation you
should select the SStep Professional Suite (MPC5xx) option.

A Toolchains and Hardware

A-4

For SingleStep 7.6.2, you may want to obtain the following files from Wind
River Systems and apply the updates they contain:

• pcflash11_29_00.zip

Apply this update first. See the accompanying file, pcflash11_29_00.txt.
• pcflash3_15_01.zip

 Apply this update second. See the accompanying file, pcflash3_15_01.txt.

This document describes use of SingleStep version 7.6.2 or 7.7.3 and this may
differ from your installed version of SingleStep, or with future versions of
SingleStep. To resolve questions or difficulties with SingleStep, refer to the
SingleStep documentation, or contact Wind River Systems.

You will need to note the path to the installed SingleStep debugger in order to
configure your target preferences (see “Setting Target Preferences for Diab and
SingleStep” on page A-4).

Setting Target Preferences for Diab and SingleStep
After installing your development tools, the next step is to configure your
target preferences for the Diab cross-compiler and SingleStep debugger.
(Please read “Setting Target Preferences” on page 1-14, if you have not yet done
so.)

1 Select Start –> Simulink –> Embedded Target for Motorola MPC555 –>
Target Preferences.

This opens the Target Preferences GUI where you can edit the settings for
your cross-development environment.

2 Select Diab from the Toolchain menu

3 Expand the ToolChainOptions by clicking the plus sign, and type the correct
path into CompilerPath. For example “d:\applications\diab\4.3g”.

4 For SingleStep you must also type the correct path into DebuggerPath.
This is not necessary for CodeWarrior as the compiler and debugger are
integrated. For example “d:\applications\sds”.

5 The defaults for DebuggerSwitches and DebuggerExecutable are set up
for use of SingleStep 7.6.3 (using a Vision Probe BDM connection). You may
need to change LPT1 to whatever port you connect to.

Setting Up Your Installation with Diab Cross-Compiler and SingleStep Debugger

A-5

6 To use any other BDM device than the Vision Probe (such as the Wiggler,
Raven/Blackbird or OnBoard BDM with version 7.7.2 of SingleStep), you
must change two target preferences from the defaults:

a Change the DebuggerSwitches target preference to the following:

-g -V mpc555 r p LPT1=1

If necessary you can change LPT1 to whatever port you connect the probe
to.

b Change the DebuggerExecutable from the default to:

bdmp58.exe

The DebuggerSwitches target preference is specific to SingleStep. If you want
to change the default debug settings, type

help debug

at the SingleStep command line to see the options available. For example you
can change parallel port here. The default is -p LPT1=1 which specifies port 1
on your host PC at speed 1. You could change it to -p LPT2=2 to specify port 2
at speed 2.

Other debugger executables are supplied with SingleStep — if you want to
change the defaults to use a different connection device and different debug
settings, consult the SingleStep documentation.

Note that the path to the SingleStep debugger, specified in DebuggerPath in
the Target Preference GUI, is the root directory of your SingleStep installation,
on either an actual hard drive on your PC, or a mapped drive. Do not use a
Universal Naming Convention (UNC) path. For most purposes, the other
target preferences fields can be left at their defaults. Once you have set these

A Toolchains and Hardware

A-6

target preferences, the build process will automatically invoke your compiler
and debugger when required for downloading code to flash memory and RAM.

Configure phyCORE-MPC555 Jumpers
Make sure that the jumpers on the phyCORE-MPC555 board are set as
described in “Phytec Jumper Settings” on page –10. The correct jumper
configuration is required when downloading to flash memory via the BDM port.
Any other jumper settings may cause downloading to flash memory to fail, or
cause other problems when operating with the Embedded Target for Motorola
MPC555. For additional information on jumper settings, consult the
phyCORE-MPC555 documentation and the SingleStep manual.

The next step is to verify your installation:

1 You can download and run the test program supplied. See “Run Test
Program” on page 1–20.

2 You must then follow the instructions to download boot code (“Download
Boot Code to Flash Memory” on page 1–20). Once you have completed these
steps, you can begin working with the Embedded Target for Motorola
MPC555.

Setting Up Your Installation with Metrowerks CodeWarrior

A-7

Setting Up Your Installation with
Metrowerks CodeWarrior

To use the Embedded Target for Motorola MPC555 with Metrowerks
CodeWarrior, you need the following:

• An MPC555 development board (such as the phyCORE-MPC555
development board) and a debugger connector (such as the BDM Wiggler
from Macraigor Systems). Note the phyCORE-MPC555 board comes with
built-in debugger connector which you can plug a parallel port connector into
directly, in which case you may not require a BDM connector.

• Metrowerks CodeWarrior for Embedded PowerPC (Version 8.0) CD (or
network access to the Metrowerks CodeWarrior for Embedded PowerPC
installer).

Install Metrowerks CodeWarrior IDE
The first step is to install the Metrowerks CodeWarrior IDE:

1 If you have previously installed a version of Metrowerks CodeWarrior for
Embedded PowerPC that is earlier than version 8.0, uninstall it.

2 Install CodeWarrior for Embedded PowerPC version 8.0 using the setup
program provided on your Metrowerks CodeWarrior CD (or on your
network). Run Setup.exe and follow the prompts.

3 Open CodeWarrior IDE. You can use the Windows Start menu (Start –>
Programs –> CodeWarrior –> CodeWarrior IDE).

4 Select Edit –> Preferences –> Build Settings –> Build Before Running

5 Select the option Never and click Apply.

It is vital you set this to avoid errors when building and automatically
downloading code with Embedded Target for Motorola MPC555.

Configure Metrowerks CodeWarrior Debugger
The next step is to configure the CodeWarrior debugger to communicate with
the phyCORE-MPC555 board over the parallel port:

A Toolchains and Hardware

A-8

1 From the Metrowerks CodeWarrior IDE, select the Edit menu, and open the
IDE Preferences dialog box. In the IDE Preference Panels pane, click on
the plus sign next to Debugger.

2 A list of choices opens below Debugger. Select Remote Connections. The
Remote Connections panel is displayed on the right.

3 If you are using a Raven or Blackbird BDM device, select MSI BDM Raven
from the list in the Remote Connections panel.

4 If you are using a Wiggler, Select MPC555DK Wiggler from the list in the
Remote Connections panel.

If no MPC555DK Wiggler configuration exists, create one as follows:

a Click the Add... button. The New Connection configuration dialog box
opens.

b Set the Name property to MPC555DK Wiggler.

c Set the Debugger property to EPPC MSI Wiggler.

d Set the Connection Type property to Parallel.

e Set the Connection Port property to match the port to which you have
connected your phyCORE-MPC555 board (the default is LPT1).

f Set the Speed property to 1.

g Set the FPU Buffer Address property to 0x3f9800.

h Click OK and skip to step 5.

5 If a MPC555DK Wiggler exists, click the Change... button. The MPC555DK
Wiggler configuration dialog box opens. By default, the Parallel Port
property is set to LPT1. If you have connected your phyCORE-MPC555 board
to a different port, change the Parallel Port setting accordingly. Then click
OK to close the MSI Wiggler configuration dialog box.

6 Click Apply and close the IDE Preferences dialog box.

Setting Up Your Installation with Metrowerks CodeWarrior

A-9

Set Target Preferences for CodeWarrior
The next step is to configure your target preferences for Metrowerks
CodeWarrior. (Please read “Setting Target Preferences” on page 1-14, if you
have not yet done so). Follow these steps:

1 Select Start –> Simulink –> Embedded Target for Motorola MPC555 –>
Target Preferences.

This opens the Target Preferences GUI where you can edit the settings for
your cross-development environment.

2 Select CodeWarrior from the Toolchain menu.

3 Expand the ToolChainOptions by clicking the plus sign, and type the correct
path into CompilerPath.

Note that when using CodeWarrior, you do not also have to specify the
DebuggerPath, as the compiler and debugger are integrated. When required,
the build process will automatically invoke the CodeWarrior debugger.

For most purposes, the other target preferences fields can be left at their
defaults.

The next step is to verify your installation.

1 You can download and run the test program supplied. See “Run Test
Program” on page 1-20.

2 You must then follow the instructions to download boot code (“Download
Boot Code to Flash Memory” on page 1–20). Once you have completed these
steps, you can begin working with Embedded Target for Motorola MPC555.

A Toolchains and Hardware

A-10

Setting Up Your Target Hardware
In this document, we assume that you are working with the Phytec
phyCORE-MPC555 development board. This section describes the required
connections and jumper settings for the board.

If you are not using the phyCORE-MPC555 development board see
“Configuration for Nondefault Hardware” on page A-14.

Phytec Communications Ports
Before you begin working with the Embedded Target for Motorola MPC555,
you should set up your phyCORE-MPC555 board and connect it to your host
computer. The hardware setup is described in the phyCORE-MPC555
Quickstart Instructions manual on your Phytec Spectrum CD. See the
“Interfacing the phyCORE-MPC555 to a Host PC” section of the “Getting
Started” chapter.

In this document, we assume that you have connected your phyCORE-MPC555
board to the same serial (COM1) and parallel (LPT1) ports described in the
phyCORE-MPC555 Quickstart Instructions.

Phytec Jumper Settings
The Embedded Target for Motorola MPC555 has been tested by the
MathWorks with the Phytec phyCORE-MPC555 board, using the jumper
settings indicated in the table below.

For jumper locations and pin numbers, see Jumper Layout section of the
Development Board for phyCORE-MPC555 Hardware Manual, “L-525E.pdf”
found at

http://www.phytec.de/manuals

Note that when using the On-Board BDM connection, if you then want to run
the target standalone (disconnected from the debugger) you must also
disconnect (open) jumper 6. This only affects the on-Board BDM, all other
configurations always have jumper 6 open. Use the On-Board BDM settings in

Setting Up Your Target Hardware

A-11

the table if you are using the BDM connection for debugging, but remember you
must make this change to run standalone:

• For debugging: Jumper 6 must be closed (target stops always in debug mode
after reset); connect parallel cable to target.

• For standalone: Jumper 6 must be open (target runs in normal mode after
reset); disconnect parallel cable from target.

The following table summarizes the correct jumper settings to use when your
host PC is connected to the on-board BDM port, or via Vision Probe, Wiggler,
Raven, or Blackbird devices.

Jumper Description Vision Probe,
Raven
or Blackbird

Wiggler On-Board
BDM

JP13 CAN A bus termination Closed (apply
120 Ohm
termination)

as Raven as Raven

JP14 CAN B bus termination Closed (apply
120 Ohm
termination)

as Raven as Raven

JP15 Select boot memory 1+2 (boot from
internal flash
memory)

as Raven as Raven

JP3 Connect push button to different
reset signals

1+2 (/HRESIN
connected to
push button)

as Raven as Raven

JP18 Connect interrupt to push button Default 1+2 as Raven as Raven

JP17 Connect /HRESET or /SRESET to
external BDM interface logic

1+2 (/HRESET
connected to
BDM interface
logic)

as Raven as Raven

JP1 On-board BDM reset signal
connection

Open as Raven 3+4
closed

A Toolchains and Hardware

A-12

Note The MPC555 flash memory has a limited lifetime, which is shortened
each time the flash memory is programmed. To extend product life, Motorola
recommends using flash programming only when necessary.

JP5,JP6,JP7,
JP8,JP9

Jumpers relating to on-board
BDM

Open as Raven All closed

JP2 Power supply for external BDM Open (unless
BDM device
requires supply
voltage from
development
board)

1+2 closed 1+2 closed

JP10 Connect one of the LEDs to supply
voltage

Closed as Raven as Raven

JP11 Connect 5V supply voltage Closed as Raven as Raven

JP12 Connect 3V3 supply voltage Closed as Raven as Raven

JP4 Programming of Internal MPC555
Flash internal memory enabled

Closed as Raven as Raven

JP16 Use J5 as source of
Hard-Reset-Configuration

Open as Raven as Raven

Jumper Description Vision Probe,
Raven
or Blackbird

Wiggler On-Board
BDM

CAN Hardware and Drivers

A-13

CAN Hardware and Drivers
If you want to download generated code to the target board via CAN, you will
need one of the following supported CAN cards, and the drivers supplied by the
manufacturer:

• Vector-Informatik CanAC2PCI

• Vector-Informatik CanAC2

• Vector-Informatik CanCardX

• Vector-Informatik CanPari

The blocks in the CAN Drivers (Vector) blockset, and using the Download
Control Panel utility over CAN, require correct installation of a CAN card and
drivers from Vector-Informatik. See your Vector-Informatik documentation for
instructions on installation and verification. This product has been tested with
the following hardware / driver combinations:

• CAN-AC2-PCI - Plug & Play Driver V3.4 for Windows 98 / 2000 / XP

• CANcardX - Plug & Play Driver V3.4 for Windows 98 / 2000 / XP

Older Vector CAN drivers should also work without any major problems,
however we recommend you install the most recent drivers so that you have the
latest improvements and bug fixes.

Note Please check the Vector Informatik Web site at
http://www.vector-informatik.com to make sure you have drivers suitable
for your PC operating system version. Note that serious system problems can
arise if you use drivers for the wrong PC operating system version (e.g.,
installing drivers for Windows NT on a Windows 2000 system).

In addition, after installing the drivers for your hardware, you must also
download the CANdriver Library (Programming Library V3.2) from
Vector-Informatik, and make sure that the library, vcand32.dll is placed in a
location on the Windows system path. We recommend placing vcand32.dll in
the Windows system32 directory, which will save you having to change the
path environment variable itself. If these configuration steps are not followed
then errors in the use of the CAN Drivers (Vector) blockset and downloading
over CAN will occur.

A Toolchains and Hardware

A-14

Configuration for Nondefault Hardware
The Embedded Target for Motorola MPC555 has been developed and fully
tested using Phytec phyCORE-MPC555 development board. We strongly
recommend the use of this board for getting started with the Embedded Target
for Motorola MPC555. If you are using different MPC555 hardware, it may be
necessary to perform some additional manual configuration.

The next section describes how to configure the Embedded Target for Motorola
MPC555 real-time target for use on hardware with 4MHz crystal frequency
(the default is 20 MHz).

The following sections give additional information about where to make
changes for other hardware-specific configurations.

Hardware Clock Configuration
The Embedded Target for Motorola MPC555 uses the Periodic Interrupt Timer
(PIT) to support a range of sample times. Note that the PIT is driven by the
crystal frequency. This results in the following possible sample time ranges:

For a crystal frequency of 20Mhz:

• Fastest sample time = 1.28e-5 seconds.

• Slowest sample time = 0.8388 s.

For a crystal frequency of 4 Mhz:

• Fastest sample time = 6.4e-5 s.

• Slowest sample time = 4.1942 s.

Note that if you select a sample time slower than the slowest possible for your
clock frequency, Simulink issues a warning message.

Also note that the fastest sample time may not be achievable because timer
overruns may occur, depending on your model.

Configuring the Embedded Target for Motorola MPC555 for a crystal
frequency other than 20 MHz
The MPC555 can operate with a crystal frequency of either 4 MHz or 20 MHz.
By default, the Embedded Target for Motorola MPC555 is configured for a
crystal frequency of 20 MHz.

Configuration for Nondefault Hardware

A-15

You can use the Target Preferences to change to a 4MHz oscillator frequency.

1 Use the Start button to open the Target Preferences: Start –> Simulink –>
Embedded Target for Motorola MPC555 –> Target Preferences.

2 Use the drop-down menu for OscillatorFrequency to change from 20 (the
default) to 4.

3 Now install the appropriate bootcode for your hardware. Select Start –>
Simulink –> Embedded Target for Motorola MPC555 –> Install MPC5xx
Bootcode

The correct bootcode is installed for the oscillator frequency and processor
variant that you have selected in the Target Preferences.

Note that you must also change the oscillator frequency in your models. Use
the Resource Configuration block. The oscillator frequency set here must
match the Target Preferences.

The default value for Oscillator_Frequency is 20000000. If you are using
4MHz hardware, you must change the value for Oscillator_Frequency to
4000000 in every model.

Other Configuration Changes for Nondefault Hardware
Depending on your target hardware, it may be necessary to make changes to
configure settings such as the size and type of external memory.

If you are downloading using the Metrowerks CodeWarrior development
environment, the relevant hardware configuration settings are contained in
matlabroot\toolbox\rtw\targets\mpc555dk\mpc555dk\:

@codewarrior_tgtaction\mpc5xx_osc20.cfg
@codewarrior_tgtaction\mpc5xx_osc4.cfg

If you are downloading using the Diab and SingleStep development
environment, the configuration settings are contained in
matlabroot\toolbox\rtw\targets\mpc555dk\mpc555dk\:

@diab_tgtaction\mpc5xx_osc20.cfg
@diab_tgtaction\mpc5xx_osc4.cfg
@diab_tgtaction\mpc555.wsp

A Toolchains and Hardware

A-16

Note that there is now only one SingleStep workspace file for RAM and flash
memory.

The necessary changes to these files depend on the hardware that you are
using. Depending on your hardware, you may also need to configure switches
and jumper settings. Consult the documentation for your development board.

If you are generating standalone real-time applications, you may also need to
make changes to settings that are contained in the startup code. These are
contained in

matlabroot\toolbox\rtw\targets\mpc555dk\drivers\src\applications
\bootcode\bootcode_init.s

Note that after making any changes to bootcode_init.s, you must recompile
the boot code as described in “Boot Code Parameters for CAN Download” on
page 2-27.

Integrating External Blocksets

A-17

Integrating External Blocksets
You can configure a rtwmakecfg.m file to seamlessly integrate custom
third-party Simulink blocks with the Embedded Target for Motorola MPC555.
You must provide the rtwmakecfg.m file along with the third party S-function
block .dlls and associated files. rtwmakecfg.m files are widely used
throughout Real-Time Workshop Embedded Coder and they allow you to:

• Specify include paths to add to the list of includes used in the generated
makefiles.

• Specify precompiled libraries to add to the list of libraries used in the
generated makefiles.

• Specify TLC include paths to be searched for block TLC files during code
generation.

For a general explanation of how to use rtwmakecfg.m files, please see the
section “Customizing and Creating Template Makefiles” in the documentation
for Developing Embedded Targets for Real-Time Workshop Embedded Coder.

The next section contains a detailed explanatory example for the MPC555
build process.

These steps are required:

• Add the location of the rtwmakecfg.m file to the MATLAB path.

• Make sure this file is located in the same directory as the S-function .dlls.

Example External Blockset Directory Structure and rtwmakecfg.m
To understand how the rtwmakecfg.m file works, imagine a set of S-functions,
comprising a Simulink library, provided by an external supplier, and how they
can be integrated into the MPC555 build process.

Example directory structure for an external (plugin) blockset:

C:\externalblocks
C:\externalblocks\tlc_c
C:\externalblocks\include
C:\externalblocks\lib

Note: Only the root directory C:\externalblocks needs to be on the MATLAB
path.

A Toolchains and Hardware

A-18

C:\externalblocks will contain files such as:

• Rtwmakecfg.m — rtwmakecfg.m defining MPC555 Plugins

• Blocklibrary.mdl — Simulink block library containing Sfun_a and Sun_b

• Sfun_a.dll — S-function member of Blocklibrary.mdl

• Sfun_b.dll — S-function member of Blocklibrary.mdl

C:\externalblocks\tlc_c will contain files such as:

• Sfun_a.c — S-function source for simulation.

• Sfun_b.c — S-function source for simulation.

• Sfun_a.tlc — S-function TLC for code generation

• Sfun_b.tlc — S-function TLC for code generation

Note: tlc_c directories in the same directory as the S-function .dlls are
automatically added to the TLC include path.

C:\externalblocks\include will contain files such as:

• Blocksetheader.h — Header file used in the generated code

C:\externalblocks\lib will contain files such as:

• Blocksetlibrary.a — Library file linked with the generated code

An example rtwmakecfg.m that will add the Blocksetheader.h parent
directory to the list of include paths and Blocksetlibrary.a to the list of libraries
follows:

function makeInfo=rtwmakecfg()
%RTWMAKECFG Add include and source directories to RTW make files.
% makeInfo=RTWMAKECFG returns a structured array containing
% following fields:

% makeInfo.includePath - cell array containing additional
include directories. Those directories will be expanded into
include instructions of rtw generated make files.

% makeInfo.sourcePath - cell array containing additional
source directories. Those directories will be expanded into rules
of rtw generated make files.

Integrating External Blocksets

A-19

% makeInfo.library - structure containing additional runtime
library names and module objects. This information will be
expanded into rules of rtw generated make files.

% Get hold of the fullpath to this file, without the filename
itself

rootpath = fileparts(mfilename('fullpath'));

% External blocks need the following include path added

makeInfo.includePath = { fullfile(rootpath, 'include') };

% External blocks reference the following precompiled library

makeInfo.precompile = 1;
makeInfo.library(1).Name = 'Blocksetlibrary';
makeInfo.library(1).Location = fullfile(rootpath, 'lib');

% Note: the 'dummy' module must be specified for the process to
% work correctly - the library will not be rebuilt

makeInfo.library(1).Modules = { 'dummy' };

A Toolchains and Hardware

A-20

Index-1

Index

A
algorithm export 3-27
ASAP2 files, generating 2-30
Asynchronous Rate Transition 4-17
Asynchronous Rate Transition block 4-17

B
blocks

Asynchronous Rate Transition 4-17
CAN Calibration Protocol (MPC555) 4-18
MIOS Digital In 4-24
MIOS Digital Out 4-26
MIOS Digital Out (MPWMSM) 4-28
MIOS Pulse Width Modulation Out 4-30
MIOS Waveform Measurement 4-33
MPC555 Execution Profiling via CAN A 4-36
MPC555 Execution Profiling via SCI1 4-39
MPC555 Resource Configuration 4-41
QADC Analog In 4-58
QADC Digital In 4-62, 4-65, 4-70
Serial Receive 4-72
Serial Transmit 4-75
TouCAN Error Count 4-78
TouCAN Fault Confinement State 4-80
TouCAN Interrupt Generator 4-82
TouCAN Receive 4-84
TouCAN Soft Reset 4-88
TouCAN Transmit 4-89
TouCAN Warnings 4-92
TPU Digital In 4-93
TPU Digital Out 4-96
TPU Fast Quadrature Decode 4-98
TPU New Input Capture/Input Transition

Counter 4-102
TPU Programmable Time Accumulator 4-108
TPU Pulse Width Modulation Out 4-111

Watchdog 4-115

C
CAN Calibration Protocol (CCP) 4-18
CAN Calibration Protocol (MPC555) block 4-18
code analysis report 3-28
Configuration Class blocks 4-10
cosimulation 3-2

D
device driver blocks

input data types 4-12
input scaling 4-12
MPC555 Serial Receive 4-72
MPC555 Serial Transmit 4-75
output data types 4-12
output scaling 4-12

downloading code to target 2-19
application code 2-22

to flash memory 2-22
to RAM 2-22

E
Embedded Target for Motorola MPC555

feature summary 1-2

I
installation of Embedded Target for Motorola

MPC555 1-10

M
MIOS Digital In block 4-24

Index

Index-2

MIOS Digital Out (MPWMSM) block 4-28
MIOS Digital Out block 4-26
MIOS Pulse Width Modulation Out block 4-30
MIOS Waveform Measurement block 4-33
MPC555 Execution Profiling via CAN A block

4-36
MPC555 Execution Profiling via SCI1 block

4-39
MPC555 Resource Configuration object 4-41
MPC555 Target 1-1

P
PIL (processor-in-the-loop) cosimulation 3-2

benefits of 3-2
getting started tutorial 3-5
hardware connections for 3-5
in plant/controller simulation 3-3
preparation for 3-5
technical overview of 3-3

PIL (processor-in-the-loop) target 3-2
files and directories created by 3-24
in cosimulation 3-14
in SIL simulation 3-21
using in closed-loop simulation 3-21

Q
QADC Analog In block 4-58
QADC Digital In block 4-62, 4-65, 4-70

R
real-time target

introduction 2-2
tutorial 2-4

code generation 2-9

example model for 2-6
prerequisites for 2-4

S
Serial Receive block 4-72
Serial Transmit block 4-75
software-in-the-loop (SIL) simulation 3-21

T
target hardware setup

communications ports A-10
jumper settings A-10

TouCAN Error Count block 4-78
TouCAN Fault Confinement State block 4-80
TouCAN Interrupt Generator block 4-82
TouCAN Receive block 4-84
TouCAN Soft Reset block 4-88
TouCAN Transmit block 4-89
TouCAN Warnings block 4-92
TPU Digital In block 4-93
TPU Digital Out block 4-96
TPU Fast Quadrature Decode block 4-98
TPU New Input Capture/Input Transition Counter

block 4-102
TPU Programmable Time Accumulator block

4-108
TPU Pulse Width Modulation Out block 4-111

W
Watchdog block 4-115
watchdog timer 4-115

	Getting Started
	Introduction to the Embedded Target for Motorola MPC555
	Feature Summary
	Applications for the Embedded Target for Motorola MPC555

	Prerequisites
	Using This Guide
	Installing the Embedded Target for Motorola MPC555
	Hardware and Software Requirements
	Operating System Requirements
	Hardware Requirements
	Software Requirements

	Setting Up and Verifying Your Installation
	Setting Target Preferences
	Configuring the Embedded Target for Motorola MPC555 for Your Cross-Development Toolchain
	Run Test Program
	Download Boot Code to Flash Memory

	Generating Stand-Alone Real-Time Applications
	Introduction
	Deploying Generated Code

	Tutorial: Creating a New Application
	Before You Begin
	The Example Model
	Generating Code
	Downloading the Application to RAM via Serial or CAN
	Downloading the Application to RAM via BDM

	Downloading Boot and Application Code
	RAM vs. Flash Memory
	Overview of Memory Organization and the Boot Process
	Downloading Application Code
	Downloading Boot or Application Code via CAN Without Manual CPU Reset
	Boot Code Parameters for CAN Download

	Generating ASAP2 Files
	ASAP2 File Generation Procedure
	Data Acquisition (DAQ) List Configuration

	Execution Profiling
	The Execution Profiling Block
	Real Time Workshop Options for Execution Profiling
	Real Time Workshop Overrun Options

	Summary of the Real-Time Target
	Code Generation Options
	Requirements and Restrictions

	PIL Cosimulation
	Overview of PIL Cosimulation
	Why Use Cosimulation?
	How Cosimulation Works

	Tutorial 1: Building and Running a PIL Cosimulation
	Before You Begin
	Hardware Connections
	The Demo Model
	Setting Up the Model
	Building PIL and Simulation Components
	Using the Demo Model In a PIL Cosimulation

	Tutorial 2: Modifying and Rebuilding the Controller
	Modifying the Controller
	Rebuilding the Controller and Cosimulating

	Tutorial 3: Using the Demo Model In Simulation
	PIL Target Summary
	Code Generation Options
	Build Process Files and Directories
	Restrictions

	Algorithm Export Target
	Code Analysis Reporting
	Algorithm Export Target Summary
	Code Generation Options
	Restrictions

	Block Reference
	The Embedded Target for Motorola MPC555 Block Libraries
	Using Block Reference Pages

	Blocks Organized by Libraries
	MPC555 Driver Library
	Configuration Class Blocks
	CAN Message Blocks and CAN Drivers Libraries
	Data Type Support and Scaling for Device Driver Blocks

	Asynchronous Rate Transition
	CAN Calibration Protocol (MPC555)
	MIOS Digital In
	MIOS Digital Out
	MIOS Digital Out (MPWMSM)
	MIOS Pulse Width Modulation Out
	MIOS Waveform Measurement
	MPC555 Execution Profiling via CAN A
	MPC555 Execution Profiling via SCI1
	MPC555 Resource Configuration
	QADC Analog In
	QADC Digital In
	QADCE Analog In
	QADCE Digital In
	Serial Receive
	Serial Transmit
	TouCAN Error Count
	TouCAN Fault Confinement State
	TouCAN Interrupt Generator
	TouCAN Receive
	TouCAN Soft Reset
	TouCAN Transmit
	TouCAN Warnings
	TPU3 Digital In
	TPU3 Digital Out
	TPU3 Fast Quadrature Decode
	TPU3 New Input Capture/Input Transition Counter
	TPU3 Programmable Time Accumulator
	TPU3 Pulse Width Modulation Out
	Watchdog

	Toolchains and Hardware
	Setting Up Your Toolchain
	Setting Up Your Installation with Diab Cross-Compiler and SingleStep Debugger
	Setting Up Your Installation with Metrowerks CodeWarrior
	Setting Up Your Target Hardware
	CAN Hardware and Drivers
	Configuration for Nondefault Hardware
	Hardware Clock Configuration

	Integrating External Blocksets

	Index

